Synthesis of violet light emitting single crystalline ZnO nanorods by using CTAB-assisted hydrothermal method


ZnO nanorods were grown by cetyl trimethylammonium bromide assisted hydrothermal technique from a single molecular precursor. The phase and structural analysis were carried out by X-ray diffraction technique and Raman spectroscopy, respectively. The phase and structural analysis has suggested that as prepared nanorods have hexagonal wurzite structure. Morphology of the nanorods was investigated by electron microscopy techniques which showed the formation of well dispersed nanorods of 100 ± 10 nm in diameter and 900 ± 100 nm in length. Optical properties were investigated by photoluminescence spectroscopy. As prepared ZnO nanorods have shown intense room temperature photoluminescence peak in the violet region at 403 nm. Absence of defect mediated green luminescence peak suggests the formation of well crystalline ZnO nanorods without any impurities or structural defects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5


  1. 1.

    V. Čechalová, A. Kalendová, J. Phys. Chem. Solids 68, 1096 (2007). doi:10.1016/j.jpcs.2006.11.017

    Article  ADS  Google Scholar 

  2. 2.

    A.E. Suliman, Y. Tang, L. Xu, Sol. Energy Mater. Sol. Cells 91, 1658 (2007). doi:10.1016/j.solmat.2007.05.014

    Article  Google Scholar 

  3. 3.

    K.M. Parida, S.S. Dash, D.P. Das, J. Colloid Interface Sci. 298, 787 (2006). doi:10.1016/j.jcis.2005.12.053

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    T. Gao, T.H. Wang, App. Phys. A 80, 1451 (2005). doi:10.1007/s00339-004-3075-2

    Article  ADS  CAS  Google Scholar 

  5. 5.

    Ü. Özgür, Y.I. Alivov, A. Take, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005). doi:10.1063/1.1992666

    Article  ADS  Google Scholar 

  6. 6.

    B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003). doi:10.1021/ja0299452

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    B. Cheng, E.T. Samulski, Chem. Commun. 8, 986 (2004). doi:10.1039/b316435g

    Article  Google Scholar 

  8. 8.

    T. Sahoo, S.K. Tripathy, Y.T. Yu, H.K. Ahn, D.C. Shin, I.H. Lee, Mater. Res. Bull. 43, 2060 (2008). doi:10.1016/j.materresbull.2007.09.011

    Article  CAS  Google Scholar 

  9. 9.

    D. Vernardu, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, N. Katsarakis, Thin Solid Films 515, 8764 (2007). doi:10.1016/j.tsf.2007.03.108

    Article  ADS  Google Scholar 

  10. 10.

    R.S. Yadav, A.C. Pandey, S.S. Sanjay, Struct. Chem. 18, 1001 (2007). doi:10.1007/s11224-007-9251-1

    Article  CAS  Google Scholar 

  11. 11.

    X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 78, 99 (2002). doi:10.1016/S0254-0584(02)00310-3

    Article  CAS  Google Scholar 

  12. 12.

    Y.H. Ni, X.W. Wei, X. Ma, J.M. Hong, J. Cryst. Growth 283, 48 (2005). doi:10.1016/j.jcrysgro.2005.05.048

    Article  ADS  CAS  Google Scholar 

  13. 13.

    J. Xie, P. Li, Y. Wang, Y. Wei, Phys. Status Solidi 205, 1560 (2008). doi:10.1002/pssa.200824115

  14. 14.

    D. Chu, Y.P. Zeng, D. Jiang, Mater. Lett. 60, 2783 (2006). doi:10.1016/j.matlet.2006.01.089

    Article  CAS  Google Scholar 

  15. 15.

    T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 570 (1966). doi:10.1103/PhysRev.142.570

    Article  ADS  CAS  Google Scholar 

  16. 16.

    B.G. Wang, E.W. Shi, W.Z. Zhong, Cryst. Res. Technol. 32, 659 (1997). doi:10.1002/crat.2170320509

    Article  CAS  Google Scholar 

  17. 17.

    S.W. Kim, S. Fujita, F. Fujita, Appl. Phys. Lett. 81, 5036 (2002). doi:10.1063/1.1527690

    Article  ADS  CAS  Google Scholar 

  18. 18.

    A. Umar, Y.B. Hahn, Nanotechnology 17, 2174 (2006). doi:10.1088/0957-4484/17/9/016

    Article  ADS  CAS  Google Scholar 

  19. 19.

    H.J. Egelhaaf, D. Oelkrug, J. Cryst. Growth 161, 190 (1996). doi:10.1016/0022-0248(95)00634-6

    Article  ADS  CAS  Google Scholar 

  20. 20.

    A. Umar, B. Karunagaran, E.K. Suh, Y.B. Hahn, Nanotechnology 17, 4072 (2006). doi:10.1088/0957-4484/17/16/013

    Article  ADS  CAS  Google Scholar 

Download references


This work was supported by Post-BK21 program from Ministry of Education and Human-Resource Development.

Author information



Corresponding author

Correspondence to Yeon-Tae Yu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rai, P., Tripathy, S.K., Park, NH. et al. Synthesis of violet light emitting single crystalline ZnO nanorods by using CTAB-assisted hydrothermal method. J Mater Sci: Mater Electron 20, 967–971 (2009).

Download citation


  • Growth Unit
  • Band Edge Emission
  • Hydrothermal Technique
  • Aqueous Chemical Growth
  • Single Ionize Oxygen Vacancy