Skip to main content
Log in

Effect of Mn4+ substitution on thermal, structural, dielectric and impedance properties of lead titanate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline samples of Mn-modified lead titanate (Pb Mn x Ti1−x O3 (PMT) with x = 0, 0.04, 0.07, 0.10) were prepared by a high-temperature solid-state reaction method. Calcination and sintering temperatures were optimized by thermal gravimetric analysis and repeated firing. Preliminary structural studies using an X-ray diffraction technique (at room temperature) suggest that compounds are formed in a single phase with tetragonal crystal system. Scanning electron micrographs show uniform grain distribution throughout the surface of the samples. Detailed studies of dielectric and impedance properties of the compounds in a wide range of temperature (35 °C–500 °C) and frequency range (1 kHz–1 MHz) exhibit that phase transition temperature of the PMT compounds depends on Mn concentration. The real and imaginary part of complex impedance plots exhibit semicircle(s) in the complex plane. The temperature dependent plots reveal the presence of both bulk and grain boundary effects at high-temperature. The bulk resistance of the material decreases with rise in temperatures. This exhibits a typical negative temperature coefficient of resistance behaviour of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.H. Ahn, J.M. Triscone, J. Mannhart, Nature 424, 1015 (2003). doi:10.1038/nature01878

    Article  PubMed  ADS  CAS  Google Scholar 

  2. O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22 (1998). doi:10.1063/1.882324

    Article  CAS  Google Scholar 

  3. K. Dorr, J. Phys. D Appl. Phys. (Berlin) 39, R125 (2006)

    Google Scholar 

  4. B.N. Mbenkum, N. Ashkenov, M. Schubert, M. Lorenz, H. Hochmuth, D. Michel, M. Grundmann, G. Wagner, Appl. Phys. Lett. 86, 091904 (2005)

    Article  ADS  Google Scholar 

  5. C. Chandler, C. Roger, M.H. Smith, Chem. Rev. 93, 1205 (1993). doi:10.1021/cr00019a015

    Article  CAS  Google Scholar 

  6. W.C. Hendricks, S.B. Desu, C.H. Peng, Chem. Mater. 6, 1955 (1994). doi:10.1021/cm00047a011

    Article  CAS  Google Scholar 

  7. J.S. Wright, L.F. Francis, J. Mater. Res. 8, 1712 (1993). doi:10.1557/JMR.1993.1712

    Article  ADS  CAS  Google Scholar 

  8. D. Damjanovic, T.R. Gururaja, S.J. Jang, L.E. Cross, Am. Ceram. Soc. Bull. 66, 699 (1987)

    CAS  Google Scholar 

  9. B. Jimenez, J.M. Vicente, R. Jimenez, J. Phys. Chem. Solids 57, 389 (1996). doi:10.1016/0022-3697(95)00276-6

    Article  ADS  CAS  Google Scholar 

  10. H. Takeuchi, S.E. Juomura, Y. Yamamoto, Y. Ito, J. Acoust. Soc. Am. 72, 1114 (1982). doi:10.1121/1.388319

    Article  ADS  CAS  Google Scholar 

  11. S.Y. Chu, C.H. Chen, Sens. Actuators A Phys. 89, 210 (2001). doi:10.1016/S0924-4247(00)00536-7

    Article  Google Scholar 

  12. POWD MULT: an interactive powder diffraction data interpretation and indexing programs v2.1, E. Wu School of Physical science, Hindess University of South Australia, Bedford Park, SA 5042, Australia

  13. H.P. Klung, L.B. Alexander, X-ray diffraction procedures (Wiles, New York, 1974), pp. 687–689

    Google Scholar 

  14. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Philippines, 1978), pp. 281–285

    Google Scholar 

  15. M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Oxford University Press, Oxford, 1977), pp. 294–301

    Google Scholar 

  16. J.R. Macdonald, Impedance spectroscopy, emphasizing solid materials and systems, 2nd edn. (Wiley, Singapore, 1987), pp. 217–235

    Google Scholar 

  17. J. Maier, J. Eur. Ceram. Soc. 24, 1343 (2004)

    Article  Google Scholar 

  18. Idem, Solid State Ion 157, 327 (2003)

    Article  Google Scholar 

  19. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  ADS  CAS  Google Scholar 

  20. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975)

    Article  CAS  Google Scholar 

  21. M.A.L. Nobre, S. Langfredi, J. Phys. Chem. Solids 62, 20 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, A., Choudhary, R.N.P. & Thakur, A.K. Effect of Mn4+ substitution on thermal, structural, dielectric and impedance properties of lead titanate. J Mater Sci: Mater Electron 20, 745–755 (2009). https://doi.org/10.1007/s10854-008-9797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9797-8

Keywords

Navigation