Skip to main content
Log in

Low loss, temperature stable dielectric ceramics in ZnNb2O6–Zn3Nb2O8 system for LTCC applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)ZnNb2O6xZn3Nb2O8 mixed phase ceramics have been prepared by conventional solid state ceramic route by both mixing ZnO with Nb2O5 and by ZnNb2O6 with Zn3Nb2O8, respectively. The sintered ceramics have high relative permittivity (ε r  = 23–25), high quality factor (Q u xf) up to 95,500 GHz and temperature coefficient of resonant frequency (τ f ) in the range −55 to −73 ppm/°C. The quality factors are higher for the mixtures when prepared from ZnNb2O6 and Zn3Nb2O8. The 0.5ZnNb2O6–0.5Zn3Nb2O8 has Q u xf = 95,500 GHz (at 5.16 GHz), ε r  = 22.7 and τ f  = −65 ppm/°C when sintered at 1200 °C. The τ f of the ceramic has been tuned close to zero by the addition of ZnTa2O6, which has a positive τ f . The ceramic composition (1 − y)[0.5ZnNb2O6–0.5Zn3Nb2O8]–yZnTa2O6 with y = 0.91 shows ε r  = 34.7 and Q u xf = 41,950 GHz (at 4.63 GHz) and zero τ f . In order to lower the sintering temperature of 0.5ZnNb2O6–0.5Zn3Nb2O8 ceramic for low temperature co-fired ceramic applications, low melting additives such as CuO, B2O3 and ACuB2O5 (A—Ba, Sr, Zn, Ca) have been added. 12 wt% ZnCuB2O5 added 0.5ZnNb2O6–0.5Zn3Nb2O8 ceramic sintered at 875 °C has Q u xf = 39,750 GHz (at 5.89 GHz), ε r  = 18.3 and τ f  = −88 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Wersing, in Electronic Ceramics, ed. by B.C.H. Steele (Elsevier Applied Science, London, 1991), p. 67

  2. G. Wolfram, H.E. Göbel, A.G. Siemens, Mater. Res. Bull. 16, 1455 (1981). doi:10.1016/0025-5408(81)90066-0

    Article  CAS  Google Scholar 

  3. S. Nomura, K. Toyama, K. Kaneta, Jpn. J. Appl. Phys. 21, L624 (1982). doi:10.1143/JJAP.21.L624

    Article  ADS  Google Scholar 

  4. M. Takata, K. Kageyama, J. Am. Ceram. Soc. 72, 1955 (1989). doi:10.1111/j.1151-2916.1989.tb06006.x

    Article  CAS  Google Scholar 

  5. L.A. Kalam, H. Sreemoolanadhan, R. Ratheesh, P. Mohanan, Sebastian. M.T., Mater. Sci. Eng. B 107, 264 (1989)

    Google Scholar 

  6. T. Lowe, F. Azough, R. Freer, J. Eur. Ceram. Soc. 23, 2429 (1989). doi:10.1016/S0955-2219(03)00131-6

    Article  Google Scholar 

  7. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, J. Am. Ceram. Soc. 66, 421 (1983). doi:10.1111/j.1151-2916.1983.tb10074.x

    Article  CAS  Google Scholar 

  8. H. Ohsato, M. Mizuta, T. Ikoma, Z. Onogi, S. Nishigaki, T. Okuda, J. Ceram. Soc. Jpn. 106, 178 (1998)

    CAS  Google Scholar 

  9. R.C. Pullar, K. Okeneme, N.M.N. Alford, J. Eur. Ceram. Soc. 23, 2479 (2003). doi:10.1016/S0955-2219(03)00133-X

    Article  CAS  Google Scholar 

  10. I.N. Jawahar, N. Santha, M.T. Sebastian, P. Mohanan, J. Mater. Res. 17, 3084 (2002). doi:10.1557/JMR.2002.0446

    Article  CAS  ADS  Google Scholar 

  11. X.M. Chen, Y.H. Sun, X.H. Zheng, J. Eur. Ceram. Soc. 23, 1571 (2003). doi:10.1016/S0955-2219(02)00372-2

    Article  CAS  Google Scholar 

  12. E.L. Colla, I.M. Reaney, N. Setter, J. Appl. Phys. 74, 3414 (2003). doi:10.1063/1.354569

    Article  ADS  Google Scholar 

  13. J.K. Plourde, D.F. Linn Jr., O.M. O’Bryan Jr., J. Thomas, J. Am. Ceram. Soc. 58, 418 (1975). doi:10.1111/j.1151-2916.1975.tb19013.x

    Article  CAS  Google Scholar 

  14. S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, P. Vanek, P. Kuzel et al., J. Appl. Phys. 89, 3900 (1975). doi:10.1063/1.1351873

    Google Scholar 

  15. H.J. Lee, I.T. Kim, K.S. Hong, Jpn. J. Appl. Phys. 36, L1318 (1977). doi:10.1143/JJAP.36.L1318

    Article  Google Scholar 

  16. D.W. Kim, I.T. Kim, B. Park, K.S. Hong, J. Mater. Res. 16, 1465 (2001). doi:10.1557/JMR.2001.0204

    Article  CAS  ADS  Google Scholar 

  17. M.-C. Wu, K.-T. Huang, W.-F. Su, Mater. Chem. Phys. 98, 406 (2006). doi:10.1016/j.matchemphys.2005.09.054

    Article  CAS  Google Scholar 

  18. S.-H. Wee, D.-W. Kim, S.-I. Yoo, K.S. Hong, Jpn. J. Appl. Phys. 43, 3511 (2004). doi:10.1143/JJAP.43.3511

    Article  CAS  ADS  Google Scholar 

  19. D.W. Kim, K.H. Ko, K.S. Hong, J. Am. Ceram. Soc. 84, 1286 (2001)

    CAS  Google Scholar 

  20. M.H. Kim, S. Nahm, W.S. Lee, M.J. Yoo, N.K. Kang, H.T. Kim, et al., Jpn. J. Appl. Phys. 44, 3091 (2005). doi:10.1143/JJAP.44.3091

    Google Scholar 

  21. M.H. Kim, Y.H. Jeong, S. Nahm, H.T. Kim, H.J. Lee, J. Eur. Ceram. Soc. 26, 2139 (2006). doi:10.1016/j.jeurceramsoc.2005.09.072

    Article  CAS  Google Scholar 

  22. M.H. Kim, J.B. Lim, J.C. Kim, S. Nahm, J. Am. Ceram. Soc. 89, 3124 (2006). doi:10.1111/j.1551-2916.2006.01157.x

    Article  CAS  Google Scholar 

  23. J. Krupka, K. Derzakowsky, B. Riddle, J.B. Jarvis, Meas. Sci. Technol. 9, 1751 (1998). doi:10.1088/0957-0233/9/10/015

    Article  CAS  ADS  Google Scholar 

  24. R.D. Shannon. Acta Crystallogr. 32, 751 (1976). doi:10.1107/S0567739476001551

  25. J. Petzelt, N. Setter, Ferroelectrics 150, 89 (1993). doi:10.1080/00150199308008697

    Article  Google Scholar 

  26. S.J. Penn, N.MN. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, et al., J. Am. Ceram. Soc. 80, 1885 (1997)

    Google Scholar 

  27. T.V. Kolodiazhnyi, A. Petric, G.P. Johari, A.G. Belous, J. Eur. Ceram. Soc. 22, 2013 (2002). doi:10.1016/S0955-2219(01)00515-5

    Article  CAS  Google Scholar 

  28. A. Kan, H. Ogawa, H. Ohsato, J. Alloy. Compd. 337, 303 (2002). doi:10.1016/S0925-8388(01)01950-8

    Article  CAS  Google Scholar 

  29. K. Wakino, H. Tamura, Ceram. Trans 8, 305 (1990)

    CAS  Google Scholar 

  30. D.-W. Kim, D.-Y. Kim, K.S. Hong, J. Mater. Res. 15, 1331 (2000). doi:10.1557/JMR.2000.0193

    Article  CAS  ADS  Google Scholar 

  31. H.-J. Lee, K.-S. Hong, J. Mater. Res. 12, 1437 (1997). doi:10.1557/JMR.1997.0196

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

P. S. Anjana is grateful to Council of Scientific and Industrial Research (CSIR), Govt. of India for Junior Research Fellowship. The authors acknowledge Mr. P. Guruswamy and Dr. U. Syamaprasad for XRD and Mr. P. Chandran and Dr. Peter Koshy for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mailadil Thomas Sebastian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjana, P.S., Jawahar, I.N. & Sebastian, M.T. Low loss, temperature stable dielectric ceramics in ZnNb2O6–Zn3Nb2O8 system for LTCC applications. J Mater Sci: Mater Electron 20, 587–596 (2009). https://doi.org/10.1007/s10854-008-9770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9770-6

Keywords

Navigation