Skip to main content
Log in

Development of lead-free Sn-3.5Ag/SnO2 nanocomposite solders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, feasibility of using SnO2 as reinforcement in Sn-3.5Ag is assessed. Energy-efficient microwave assisted powder metallurgy route was used for synthesis of materials. Characterization results revealed that best combination of hardness and tensile strength was realized with 0.7 vol% of SnO2 in solder matrix. An attempt is made to correlate mechanical properties of Sn-3.5Ag with the increasing presence of SnO2 particulates at the nanometer length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.T. Vianco, D.R. Frear, JOM 7, 14 (1993)

    Google Scholar 

  2. S. Kang, A. Sarkhel, JOM 23, 701 (1994)

    CAS  Google Scholar 

  3. J. Glazer, J. Electron. Mater. 23, 693 (1994). doi:10.1007/BF02651361

    Article  ADS  CAS  Google Scholar 

  4. E.P. Wood, K.L. Nimmo, J. Electron. Mater. 23, 709 (1994). doi:10.1007/BF02651363

    Article  ADS  CAS  Google Scholar 

  5. P. Babaghorbani, M. Gupta, J. Electron. Mater. 37(6), 860 (2008). doi:10.1007/s11664-008-0399-2

    Article  ADS  CAS  Google Scholar 

  6. M. Abtew, G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000). doi:10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  7. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Acta Mater. 52, 4291 (2004). doi:10.1016/j.actamat.2004.05.046

    Article  CAS  Google Scholar 

  8. D.R. Frear, P.T. Vianco, Metall. Mater. Trans. A 25(7), 1509 (1994). doi:10.1007/BF02665483

    Article  Google Scholar 

  9. J. Glazer, Int. Mater. Rev. 40, 65 (1995)

    CAS  Google Scholar 

  10. W.J. Plumbridge, C.R. Gagg, Proc. Inst. Mech. Engrs. Part L: J. Mater. Des. Appl. 214, 153 (2000)

    Google Scholar 

  11. T.B. Massalki, in Binary Alloys Phase Diagrams, (American Society of Metals, Materials Park (OH), 1990), p. 94

    Google Scholar 

  12. F. Ochoa, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1414 (2003). doi:10.1007/s11664-003-0109-z

    Article  ADS  CAS  Google Scholar 

  13. F. Ochoa, J.J. Williams, N. Chawla, JOM 55, 56 (2003). doi:10.1007/s11837-003-0142-7

    Article  CAS  Google Scholar 

  14. F. Guo, J.P. Lucas, K.N. Subramanian, J. Mater. Sci. Mater. Electron. 12, 27 (2001). doi:10.1023/A:1011264527894

    Article  CAS  Google Scholar 

  15. I. Dutta, A. Gopinath, C. Marshall, J. Electron. Mater. 31, 253 (2002). doi:10.1007/s11664-002-0141-4

    Article  ADS  CAS  Google Scholar 

  16. C.G. Kuo, S.M.L. Sastry, K.L. Jerina, Metall. Trans. A 26, 3265 (1995). doi:10.1007/BF02669454

    Article  Google Scholar 

  17. J. Lee, K. Chu, D.Y. Jeon, R. Patzelt, D. Manessis, A. Ostmann, in Proceedings of 56th Electronic Components and Technology Conference, 30 May–2 June 2006, p. 244

  18. P. Liu, F. Guo, 8th Conference on Electronics Packaging Technology (EPTC ‘06), 6–8 Dec 2006, p. 717

  19. M. Mccormack, H.S. Chen, G.W. Kammlott, S. Jin, J. Electron. Mater. 26(8), 954 (1997). doi:10.1007/s11664-997-0281-7

    Article  ADS  CAS  Google Scholar 

  20. F. Tai, F. Guo, Z.D. Xia, Y.P. Lei, Y.F. Yan, J.P. Liu et al., J. Electron. Mater. 34(11), 1357 (2005). doi:10.1007/s11664-005-0190-6

    Article  ADS  CAS  Google Scholar 

  21. J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, H.X. Gao, Mater. Sci. Eng. A 441, 135 (2006). doi:10.1016/j.msea.2006.08.006

    Article  Google Scholar 

  22. H.T. Lee, Y.H. Lee, Mater. Sci. Eng. A 419, 172 (2006). doi:10.1016/j.msea.2005.12.021

    Article  Google Scholar 

  23. Z.X. Wang, I. Dutta, B.S. Majumdar, Scr. Mater. 54, 627 (2006). doi:10.1016/j.scriptamat.2005.10.037

    Article  CAS  Google Scholar 

  24. http://www.nanoamor.com/_nanoparticles. Accessed 5th March 2008

  25. D.J. Lloyd, Int. Mater. Rev. 39, 1 (1994)

    CAS  Google Scholar 

  26. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, J. Mater. Sci. 26, 1137 (1991). doi:10.1007/BF00544448

    Article  CAS  Google Scholar 

  27. R. Roy, D.K. Agrawal, J. Cheng, US Patent 6,183,689 B1 (2001)

  28. S. Leparoux, S. Vaucher, O. Beffort, Adv. Eng. Mater. 5, 449 (2003). doi:10.1002/adem.200320136

    Article  CAS  Google Scholar 

  29. G. Sethi, A. Upadhyaya, D.K. Agrawal, Sci. Sin. 35, 49 (2003). doi:10.2298/SOS0302049S

    Article  CAS  Google Scholar 

  30. M. Gupta, W.L.E. Wong, Scr. Mater. 52, 479 (2005). doi:10.1016/j.scriptamat.2004.11.006

    Article  CAS  Google Scholar 

  31. W.L.E. Wong, S. Karthik, M. Gupta, Mater. Sci. Technol. 21, 1063 (2005). doi:10.1179/174328405X51758

    Article  CAS  Google Scholar 

  32. S.S. Panda, V. Singh, A. Upadhyaya, D.K. Agrawal, Scr. Mater. 54, 2179 (2006). doi:10.1016/j.scriptamat.2006.02.034

    Article  CAS  Google Scholar 

  33. A. Upadhyaya, G. Sethi, Scr. Mater. 54, 469 (2007). doi:10.1016/j.scriptamat.2006.11.031

    Article  Google Scholar 

  34. W.L.E. Wong, M. Gupta, Compos. Sci. Technol. 67, 1541 (2007). doi:10.1016/j.compscitech.2006.07.015

    Article  CAS  Google Scholar 

  35. K.S. Tun, M. Gupta, Compos. Sci. Technol. 67, 2657 (2007). doi:10.1016/j.compscitech.2007.03.006

    Article  CAS  Google Scholar 

  36. K.S. Tun, M. Gupta. J. Alloy Compd. (2007). doi:10.1016/j.jallcom.2007.11.047

  37. Y. Tomita, M. Tago, Y. Nemoto, K. Takahashi, Electron. Mater. Pack. EMAP 2001, 107 (2001)

    Google Scholar 

  38. P.H. Lawyer, D. Choudhury, M.D. Wetzel, D.B. Rensch, in 23rd IEEE/CPMT Electronics Manufacturing Technology Symposium, 19–21 October 1998, p. 390

  39. B.C. Kim, J.H. Kim, J.H. Lee, C.D. Yoo, D.S. Choi, J. Kor. Weld. Soc. 22, 258 (2004)

    Google Scholar 

  40. J.M. Kim, J.P. Jung, Y.N. Zhou, J.Y. Kim, J. Electron. Mater. 37(3), 324 (2008). doi:10.1007/s11664-007-0341-z

    Article  ADS  CAS  Google Scholar 

  41. R.A. Saravanan, M.K. Surappa, Mater. Sci. Eng. A 276, 108 (2000). doi:10.1016/S0921-5093(99)00498-0

    Article  Google Scholar 

  42. H. Mavoori, S. Jin, J. Electron. Mater. 27(11), 1216 (1998). doi:10.1007/s11664-998-0072-9

    Article  ADS  CAS  Google Scholar 

  43. X.L. Zhong, M. Gupta, Adv. Eng. Mater. 7(11), 1049 (2005). doi:10.1002/adem.200500109

    Article  Google Scholar 

  44. S.M.L. Nai, J. Wei, M. Gupta, Thin Solid Films 504, 401 (2006). doi:10.1016/j.tsf.2005.09.057

    Article  ADS  CAS  Google Scholar 

  45. S. Ugandhar, M. Gupta, S.K. Sinha, Compos. Struct. 72, 266 (2006). doi:10.1016/j.compstruct.2004.11.010

    Article  Google Scholar 

  46. M.J. Tan, X. Zhang, Mater. Sci. Eng. A 244, 80 (1998). doi:10.1016/S0921-5093(97)00829-0

    Article  Google Scholar 

  47. Z. Post, P. Ritt, IRE Trans. Compon. Parts 5(2), 81 (1958)

    Article  Google Scholar 

  48. C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Acta Mater. 55, 5115 (2007). doi:10.1016/j.actamat.2007.05.032

    Article  CAS  Google Scholar 

  49. M.E. Alam, M. Gupta, Powder Metall. (2008). doi: 10.1179/174329008X284895

  50. Ü. Cöcen, K. Önel, Compos. Sci. Technol. 62, 275 (2002). doi:10.1016/S0266-3538(01)00198-1

    Article  Google Scholar 

  51. C. Tekmen, I. Ozdemir, Ü. Cöcen, K. Önel, Mater. Sci. Eng. A 360, 365 (2003). doi:10.1016/S0921-5093(03)00461-1

    Article  Google Scholar 

  52. S.M.L. Nai, J. Wei, M. Gupta, J. Electron. Mater. 35(7), 1518 (2006). doi:10.1007/s11664-006-0142-9

    Article  ADS  CAS  Google Scholar 

  53. S. Ugandhar, N. Srikanth, M. Gupta, S.K. Sinha, Adv. Eng. Mater. 6(12), 957 (2003)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledges the support received for this research work ref: C-534-000-003-414 from the Minerals, Metals and Materials Technology Centre (M3TC) of the National University of Singapore. Authors also wish to acknowledge Agency for Science, Technology and Research (A*STAR) for providing research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babaghorbani, P., Nai, S.M.L. & Gupta, M. Development of lead-free Sn-3.5Ag/SnO2 nanocomposite solders. J Mater Sci: Mater Electron 20, 571–576 (2009). https://doi.org/10.1007/s10854-008-9767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9767-1

Keywords

Navigation