Skip to main content
Log in

Photoluminescence and magnetic properties of β-Ni(OH)2 nanoplates and NiO nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-crystalline β-nickel hydroxide (β-Ni(OH)2) nanoplates of hexagonal structure have been synthesized through hydrothermal process. The β-Ni(OH)2 nanoplates possess well-defined hexagonal shapes with landscape dimension of 45–140 nm and thickness of 20–50 nm. Post-thermal decomposition of the β-Ni(OH)2 nanoplates led to the formation of single-crystalline NiO nanostructures with landscape dimension of 25–120 nm including nanorolls, nanotroughs and nanoplates. The sizes of the central hole in NiO nanorolls and the low-lying ground in NiO nanotroughs are in the range of 10–24 nm. Two photoluminescence emission peaks appear at 390.5 nm and 467 nm in the photoluminescence spectrum of NiO nanostructures and were assigned to the 1T1 g (G) → 3A2 g and 1T2 g (D) → 3A2 g transitions of Ni2+ in oxygen octahedral sites, respectively. Temperature-dependent magnetic measurement results show that an antiferromagnetic-paramagnetic transition occur at 26.3 K in β-Ni(OH)2 nanoplates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.R. Ovshinsky, M.A. Fetcenko, J. Ross, Science 260, 176 (1993). doi:10.1126/science.260.5105.176

    Article  PubMed  ADS  CAS  Google Scholar 

  2. J.X. Dai, A.F.Y. Li, T.D. Xiao, D.M. Wang, D.E. Reisner, J. Power Sources 89, 40 (2000). doi:10.1016/S0378-7753(00)00391-8

    Article  CAS  Google Scholar 

  3. P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, A. De Guibert, J. Power Sources 8, 229 (1982). doi:10.1016/0378-7753(82)80057-8

    Article  CAS  Google Scholar 

  4. M. Rajamathi, G.N. Subbanna, P.V. Kamath, J. Mater. Chem. 7, 2293 (1997). doi:10.1039/a700390k

    Article  CAS  Google Scholar 

  5. H. Bode, K. Dehmelt, J. Wittle, Electrochim. Acta 11, 1079 (1966). doi:10.1016/0013-4686(66)80045-2

    Article  CAS  Google Scholar 

  6. M.C. Bernard, R. Cortes, M. Keddam, H. Takenouti, P. Bernard, S.J. Senyarich, Power Sources 63, 247 (1996). doi:10.1016/S0378-7753(96)02482-2

    Article  CAS  Google Scholar 

  7. K. Watanabe, T. Kikuoka, J. Appl. Electrochem. 25, 219 (1995). doi:10.1007/BF00262959

    Article  CAS  Google Scholar 

  8. D.E. Reisner, A.J. Salkind, P.R. Strutt, T.D. Xiao, J. Power Sources 65, 231 (1997). doi:10.1016/S0378-7753(97)02486-5

    Article  CAS  Google Scholar 

  9. F.S. Cai, G.Y. Zhang, J. Chen, X.L. Gou, H.K. Liu, S.X. Dou, Angew. Chem. 116, 4308 (2004). doi:10.1002/ange.200460053

    Article  Google Scholar 

  10. K. Matsui, T. Kyotani, A. Tomita, Adv. Mater. 14, 1216 (2002). doi: 10.1002/1521-4095(20020903)14:17<1216::AID-ADMA1216>3.0.CO;2-A

  11. Z.H. Liang, Y.J. Zhu, X.L. Hu, J. Phys. Chem. B 108, 3488 (2004). doi:10.1021/jp037513n

    Article  CAS  Google Scholar 

  12. X.H. Liu, G.Z. Qiu, Z. Wang, X.G. Li, Nanotech 16, 1400 (2005). doi:10.1088/0957-4484/16/8/071

    Article  ADS  CAS  Google Scholar 

  13. D.N. Yang, R.M. Wang, J. Zhang, Z.F. Liu, J. Phys. Chem. B 108, 7531 (2004). doi:10.1021/jp0375867

    Article  CAS  Google Scholar 

  14. Y.Y. Luo, G.T. Duan, G.H. Li, J. Solid State Chem. 180, 2149 (2007). doi:10.1016/j.jssc.2007.05.025

    Article  ADS  CAS  Google Scholar 

  15. M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, J. Power Sources 74, 46 (1998). doi:10.1016/S0378-7753(98)00011-1

    Article  CAS  Google Scholar 

  16. B. Sheela, H. Gomathi, G.P. Rao, J. Electroanal. Chem. 394, 267 (1995). doi:10.1016/0022-0728(95)04099-A

    Article  Google Scholar 

  17. C.B. Alcock, B.Z. Li, J.W. Fergus, L. Wang, Solid State Ionics 53, 39 (1992). doi:10.1016/0167-2738(92)90362-S

    Article  Google Scholar 

  18. A.C. Felic, F. Lama, M.J. Piacentini, J. Appl. Phys. 80, 3678 (1997)

    Google Scholar 

  19. D. Adler, J. Feinleib, Phys. Rev. B 2, 3112 (1970). doi:10.1103/PhysRevB.2.3112

    Article  ADS  Google Scholar 

  20. X. Wang, J.M. Song, L.S. Gao, Nanotechnology 16, 37 (2005). doi:10.1088/0957-4484/16/1/009

    Article  ADS  CAS  Google Scholar 

  21. J.H. Choy, S.Y. Kwak, J.S. Park, Y.J. Jeong, J. Portier, J. Am. Chem. Soc. 121, 1399 (1999). doi:10.1021/ja981823f

    Article  CAS  Google Scholar 

  22. H. Sato, A. Yamagishi, K. Kawamura, J. Phys. Chem. B 105, 7990 (2001). doi:10.1021/jp004491l

    Article  CAS  Google Scholar 

  23. J.T. Sampanthar, H.C. Zeng, J. Am. Chem. Soc. 124, 6668 (2002). doi:10.1021/ja012595j

    Article  PubMed  CAS  Google Scholar 

  24. N.F. Mott, R. Perls, Proc. Phys. Soc. (Extra Part) 49, 72 (1937). doi:10.1088/0959-5309/49/4S/308

    Article  ADS  Google Scholar 

  25. C. Díaz-Guerra, A. Remón, J.A. García, J. Piqueras, Phys. Stat. Sol. (a) 163, 497 (1997). doi: 10.1002/1521-396X(199710)163:2<497::AID-PSSA497>3.0.CO;2-Z

    Article  ADS  Google Scholar 

  26. T. Tsuboi, W. Kleeman, J. Phys. Condens Mat 6, 8625 (1994). doi:10.1088/0953-8984/6/41/024

    Article  CAS  Google Scholar 

  27. M. Sorai, A. Kosaki, H. Suga, S. Seki, J. Chem. Thermodynam. 1, 119 (1969). doi:10.1016/0021-9614(69)90052-4

    Article  CAS  Google Scholar 

  28. W.J. Moor, Seven Solid States (W.A. Benjamin, INC, New York, 1967), p. 134

    Google Scholar 

  29. L. Néel, in Low Temperature Physics, ed. by C. Dewitt et al. (Gordan and Beach, New York, 1962), p. 413

  30. M. Ghosh, K. Biswas, A. Sundaresana, C.N.R. Rao, J. Mater. Chem. 16, 106 (2006). doi:10.1039/b511920k

    Article  CAS  Google Scholar 

  31. Y. Ichiyanagia, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu, H. Tajima, Physica B 329–333, 862 (2003). doi:10.1016/S0921-4526(02)02578-4

    Article  Google Scholar 

  32. S.D. Tiwari, K.P. Rajeev, Phys. Rev. B 72, 104433 (2005). doi:10.1103/PhysRevB.72.104433

    Article  ADS  Google Scholar 

  33. S.D. Tiwari, K.P. Rajeev, Thin Solid Films 505, 113 (2006). doi:10.1016/j.tsf.2005.10.019

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. S. Pan and Prof. G. H. Li for help in photoluminescence measurement. This work was supported by the Research Foundation of Ph.D-degree-conferred subject in University (20070512002), the Program for New Century Excellent Talents (NCET) in University, and the Program for Excellent Young Scientists in Wuhan City, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajun Qi or Chaojing Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Y., Qi, H., Lu, C. et al. Photoluminescence and magnetic properties of β-Ni(OH)2 nanoplates and NiO nanostructures. J Mater Sci: Mater Electron 20, 479–483 (2009). https://doi.org/10.1007/s10854-008-9755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9755-5

Keywords

Navigation