Skip to main content
Log in

Microstructure and dielectric properties of BST/MZO ceramic composites for tunable microwave applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba0.6Sr0.4TiO3/Mg0.9Zn0.1O (BST/MZO) ceramic composites with different MZO contents were prepared by traditional ceramic process. The crystal structure, fracture surface morphology, and dielectric properties were systematically investigated. The results show that the BST/MZO ceramic composites possess diphase structure, dense, and uniform morphology. The composites have relatively low dielectric loss (in the order of 10−3) at microwave frequency. The ceramics all retain substantial tunability (more than 20% at 8 kV/mm DC field) and excellent dielectric strength (more than 19.5 kV/mm). The BST-50 wt% MZO sample has the optimal FOM value (about 256) and should be a better candidate for tunable microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Kim, Y. Choi, M.G. Allen, J.S. Kenney, D. Kiesling, IEEE Trans. Microw. Theory Tech. 50, 2903 (2002). doi:10.1109/TMTT.2002.805293

    Article  CAS  Google Scholar 

  2. J. Nath, D. Ghosh, J. Maria, A.I. Kingon, W. Fathelbab, P.D. Franzon, IEEE Trans. Microw. Theory Tech. 53, 2707 (2005). doi:10.1109/TMTT.2005.854196

    Article  CAS  Google Scholar 

  3. D. Kuylenstierna, A. Vorobiev, P. Linnér, S. Gevorgian, IEEE Trans. Microw. Theory Tech. 53, 2164 (2005). doi:10.1109/TMTT.2005.848805

    Article  CAS  Google Scholar 

  4. J.B.L. Rao, D.P. Patel, P.K. Park, T.K. Dougherty, J.A. Zelik, D.S. Prior, A. Moffat, L.C. Sengupta, Mat. Res. Soc. Symp. Proc. 720, 143 (2002)

    CAS  Google Scholar 

  5. L. Wu, S. Wu, F.C. Chang, Y.T. Shen, Y.C. Chen, J. Mater. Sci. 35, 5945 (2000). doi:10.1023/A:1026722206381

    Article  CAS  Google Scholar 

  6. L.C. Sengupta, E. Ngo, S. Stowell, M. O’Day, R. Lancto, US Patent 5,486,491, 23 Jan 1996

  7. L.C. Sengupta, US Patent 5,635,433, 3 Jun 1997

  8. W. Chang, L.C. Sengupta, J. Appl. Phys. 92, 3941 (2002). doi:10.1063/1.1505669

    Article  ADS  CAS  Google Scholar 

  9. L.C. Sengupta, S. Sengupta, Mater. Res. Innovat. 2, 278 (1999). doi:10.1007/s100190050098

    Article  CAS  Google Scholar 

  10. X.H. Wang, W.Z. Lu, J. Liu, Y.L. Zhou, D.X. Zhou, J. Eur. Ceram. Soc. 26, 1981 (2006). doi:10.1016/j.jeurceramsoc.2005.09.092

    Article  Google Scholar 

  11. E.R. Segnit, A.E. Holland, J. Am. Ceram. Soc. 48, 409 (1965). doi:10.1111/j.1151-2916.1965.tb14778.x

    Article  CAS  Google Scholar 

  12. S. Raghavan, J.P. Hajra, G.N.K. Iyengar, K.P. Abraham, Thermochim. Acta 189, 151 (1991). doi:10.1016/0040-6031(91)87109-A

    Article  CAS  Google Scholar 

  13. J.Q. Qi, H.Y. Tian, Y. Wang, G.K.H. Pang, L.T. Li, H.L.W. Chan, J. Phys. Chem. B 109, 14006 (2005). doi:10.1021/jp051751w

    Article  PubMed  CAS  Google Scholar 

  14. H.Y. Tian, J.Q. Qi, Y. Wang, H.L.W. Chan, C.L. Choy, Prog. Solid State Chem. 33, 207 (2005). doi:10.1016/j.progsolidstchem.2005.11.019

    Article  CAS  Google Scholar 

  15. G.H. Ning, X.P. Zhao, J. Li, Opt. Mater. 27, 1 (2004). doi:10.1016/j.optmat.2004.01.013

    Article  ADS  CAS  Google Scholar 

  16. A.F. Devonshire, Adv. Phys. 3, 85 (1954). doi:10.1080/00018735400101173

    Article  ADS  Google Scholar 

  17. K.M. Johnson, J. Appl. Phys. 33, 2826 (1962). doi:10.1063/1.1702558

    Article  ADS  Google Scholar 

  18. R.H. Liang, X.L. Dong, Y. Chen, F. Cao, Y.L. Wang, Mater. Chem. Phys. 95, 222 (2006). doi:10.1016/j.matchemphys.2005.06.015

    Article  CAS  Google Scholar 

  19. J.W. Liou, B.S. Chiou, J. Mater. Sci. Mater. Electron. 11, 645 (2000). doi:10.1023/A:1008949316917

    Article  CAS  Google Scholar 

  20. B. Su, T.W. Button, J. Appl. Phys. 95, 1382 (2004). doi:10.1063/1.1636263

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, J., Dong, G., Wang, Y. et al. Microstructure and dielectric properties of BST/MZO ceramic composites for tunable microwave applications. J Mater Sci: Mater Electron 20, 473–478 (2009). https://doi.org/10.1007/s10854-008-9754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9754-6

Keywords

Navigation