Skip to main content
Log in

Structures and electrical properties of (Na0.5K0.5)NbO3–Li(Ta0.5Nb0.5)O3 lead-free piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solid solutions of (Na0.5K0.5)NbO3 (NKN) and Li(Ta0.5Nb0.5)O3 (LTN) were investigated as a potential candidate of lead-free piezoelectric ceramics. It was found that the Curie temperature of solid solutions increases slightly with increasing the LTN content and simultaneously the polymorphic phase transition temperature linearly decrease till below room temperature. An orthorhombic to tetragonal phase transformation at room temperature, or a morphotropic phase boundary, in NKN is induced by ~7 at% LTN addition, where the best dielectric, piezoelectric and electromechanical properties are achieved. The 0.94NKN–0.07LTN ceramics possess a dielectric constant of 765, a loss tangent of 0.04 at 1 kHz, a piezoelectric constant d33 of 253 pC/N and an electromechanical coupling factor kp of 48%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991). doi:10.1143/JJAP.30.2236

    Article  ADS  CAS  Google Scholar 

  2. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954 (1997). doi:10.1111/j.1151-2916.1997.tb03219.x

    Article  CAS  Google Scholar 

  3. H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 36(part 1), 6055 (1997). doi:10.1143/JJAP.36.6055

    Article  ADS  CAS  Google Scholar 

  4. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999). doi:10.1143/JJAP.38.5564

    Article  CAS  Google Scholar 

  5. T. Wada, K. Toyoike, Y. Imanaka, Y. Matsuo, Jpn. J. Appl. Phys. 40, 5703 (2001). doi:10.1143/JJAP.40.5703

    Article  CAS  Google Scholar 

  6. D.Q. Xiao, D.M. Lin, J.G. Zhu, P. Yu, J. Electroceram. 16, 271 (2006). doi:10.1007/s10832-006-9863-7

    Article  CAS  Google Scholar 

  7. Y. Saito, H. Takao, I. Tani, T. Nonoyama, K. Takatori, T. Homma et al., Nature 432, 84 (2004). doi:10.1038/nature03028

    Article  PubMed  ADS  CAS  Google Scholar 

  8. G.H. Haertling, J. Am. Ceram. Soc. 50, 329 (1967). doi:10.1111/j.1151-2916.1967.tb15121.x

    Article  CAS  Google Scholar 

  9. R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962). doi:10.1111/j.1151-2916.1962.tb11127.x

    Article  CAS  Google Scholar 

  10. M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Jpn. J. Appl. Phys. 43, 7159 (2004). doi:10.1143/JJAP.43.7159

    Article  ADS  CAS  Google Scholar 

  11. S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Jpn. J. Appl. Phys. 43, L1072 (2004). doi:10.1143/JJAP.43.L1072

    Article  ADS  CAS  Google Scholar 

  12. B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, J. Eur. Ceram. Soc. 25, 2707 (2005). doi:10.1016/j.jeurceramsoc.2005.03.127

    Article  CAS  Google Scholar 

  13. R.Z. Zuo, J. Rodel, R.Z. Chen, L.T. Li, J. Am. Ceram. Soc. 89, 2010 (2006). doi:10.1111/j.1551-2916.2006.00991.x

    Article  CAS  Google Scholar 

  14. J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J. Am. Ceram. Soc. 89, 706 (2006). doi:10.1111/j.1551-2916.2005.00743.x

    Article  CAS  Google Scholar 

  15. Y. Guo, K.I. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004). doi:10.1063/1.1813636

    Article  ADS  CAS  Google Scholar 

  16. Y. Guo, K.I. Kakimoto, H. Ohsato, Mater. Lett. 59, 241 (2005). doi:10.1016/j.matlet.2004.07.057

    Article  CAS  Google Scholar 

  17. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005). doi:10.1063/1.2123387

    Article  ADS  Google Scholar 

  18. Z.P. Yang, Y.F. Chang, L.L. Wei, Appl. Phys. Lett. 90, 042911 (2007). doi:10.1063/1.2436648

    Article  ADS  Google Scholar 

  19. P.Z. Zhao, B.P. Li, J.F. Li, Appl. Phys. Lett. 90, 242909 (2007). doi:10.1063/1.2748088

    Article  ADS  Google Scholar 

  20. B.Q. Ming, J.F. Wang, P. Qi, G.Z. Zang, J. Appl. Phys. 101, 054103 (2007). doi:10.1063/1.2436923

    Article  ADS  Google Scholar 

  21. D.M. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 102, 034102 (2007). doi:10.1063/1.2761852

    Article  ADS  Google Scholar 

  22. S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, J. Appl. Phys. 100, 104108 (2006). doi:10.1063/1.2382348

    Article  ADS  Google Scholar 

  23. J.G. Wu, Y.Y. Wang, D.Q. Xiao, J.G. Zhu, P. Yu, L. Wu, W.J. Wu, Jpn. J. Appl. Phys. 46, 7375 (2007). doi:10.1143/JJAP.46.7375

    Article  ADS  CAS  Google Scholar 

  24. D.M. Lin, K.W. Kwok, H.L.W. Chan, J. Phys. D. Appl. Phys. (Berl.) 40, 6060 (2007)

    Article  ADS  CAS  Google Scholar 

  25. M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, J. Mater. Res. 19, 1849 (2004). doi:10.1557/JMR.2004.0229

    Article  ADS  CAS  Google Scholar 

  26. H.Y. Park, C.W. Ahn, H.C. Song, J.H. Lee, S. Nahma, K. Uchino et al., Appl. Phys. Lett. 89, 062906 (2006). doi:10.1063/1.2335816

    Article  ADS  Google Scholar 

  27. Y. Guo, K. Kakimoto, H. Ohsato, Jpn. J. Appl. Phys. 43, 6662 (2004). doi:10.1143/JJAP.43.6662

    Article  ADS  CAS  Google Scholar 

  28. R.Z. Zuo, X.S. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007). doi:10.1063/1.2710768

    Article  ADS  Google Scholar 

  29. R.Z. Zuo, X.S. Fang, C. Ye, J. Am. Ceram. Soc. 90, 2424 (2007). doi:10.1111/j.1551-2916.2007.01767.x

    Article  CAS  Google Scholar 

  30. D. Lin, K.W. Kwok, H.L.W. Chen, Appl. Phys. A. Mater. Sci. Proc. 88, 359 (2007)

    Article  ADS  CAS  Google Scholar 

  31. R.Z. Zuo, C. Ye, X.S. Fang, J. Phys. Chem. Solids 69, 230 (2008). doi:10.1016/j.jpcs.2007.08.066

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by HFUT RenCai Foundation (No. 103-035006) and a special Program for Excellence Selection “R & D of Novel Lead Free Piezoelectric Ceramics” (No.103-035034), an open fund of State Key Laboratory of New Ceramics and Fine Processing and Nippon Sheet Glass Foundation for Materials Science and Engineering. This work is also partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 9040982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruzhong Zuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, R., Su, S., Fu, J. et al. Structures and electrical properties of (Na0.5K0.5)NbO3–Li(Ta0.5Nb0.5)O3 lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 20, 469–472 (2009). https://doi.org/10.1007/s10854-008-9752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9752-8

Keywords

Navigation