Skip to main content
Log in

Tolerance factor and the stability discussion of ABO3-type ilmenite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The tolerance factor of ABO3-type ilmenite by analyzing the ABO3 ilmenite crystal structure is established. Combining with the electronegativity difference and octahedral factor of ABO3 structure, regularities governing the formation and the stability of ilmenite-type compounds are discussed. The tolerance factor equation was proved appropriate for ilmenite structure by analyzing the structure stability of some ilmenite compounds. According to the results of statistically analyzing the tolerance factor and electronegativity difference of the present ABO3-type ilmenite, the experience tolerance factor value and experience electronegativity difference value to form stable ilmenite compound were obtained, that is, > 0.80 and > 1.465, and the lowest limit of the octahedral factor \( \left( {R_M /R_{O^{2 - } } } \right) \) for ilmenite formation is 0.48.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.D. Perkins, J.A. del Cueto, J.L. Alleman, C. Warmsingh, B.M. Keyes, L.M. Gedvilas, P.A. Parilla, B. To, D.W. Readey, D.S. Ginley, Thin Solid Films 411, 152–160 (2002). doi:10.1016/S0040-6090(02)00205-5

    Article  ADS  CAS  Google Scholar 

  2. X.H. Wu, Y.D. Wang, Z.H. Tian, H.L. Liu, Z.L. Zhou, Y.F. Li, Solid-State Electron 46, 715–719 (2002). doi:10.1016/S0038-1101(01)00310-0

    Article  ADS  CAS  Google Scholar 

  3. X.H. Wu, Y.D. Wang, H.L. Liu, Y.F. Li, Z.L. Zhou, Mater. Lett. 56, 732–736 (2002). doi:10.1016/S0167-577X(02)00604-3

    Article  CAS  Google Scholar 

  4. Z.Y. Yuan, F. Huang, J.T. Sun, Y.H. Zhou, Chem. Lett. 31, 408–409 (2002). doi:10.1246/cl.2002.408

    Article  Google Scholar 

  5. B. Wang, S.C. Chen, M. Greenblatt, J .Solid State Chem. 108, 184–188 (1994). doi:10.1006/jssc.1994.1028

    Article  ADS  CAS  Google Scholar 

  6. X.C. Liu, F. Gao, L.L. Zhao, C.S. Tian, J. Alloys Compd. 436, 285–289 (2007). doi:10.1016/j.jallcom.2006.07.027

    Article  CAS  Google Scholar 

  7. X.C. Liu, F. Gao, M. Zhao, C.S. Tian, Mater. Sci. Forum 546–549, 2215–2218 (2007)

    Article  Google Scholar 

  8. A.S. Bhalla, R. Guo, R. Roy, Mat. Res. Innovat. 4, 3–26 (2000). doi:10.1007/s100190000062

    Article  CAS  Google Scholar 

  9. J.R. Sun, G.H. Rao, J.K. Liang, Appl. Phys. Lett. 70, 1900–1902 (1997). doi:10.1063/1.118725

    Article  ADS  CAS  Google Scholar 

  10. H.Y. Hwang, S.W. Choeng, R.G. Radaelli, M. Marezio, B. Batlog, Phys. Rev. Lett. 75, 914–917 (1995). doi:10.1103/PhysRevLett.75.914

    Article  PubMed  ADS  CAS  Google Scholar 

  11. J.M. de Teresa, M.R. Ibarra, J. Garcia, J. Blasco, C. Ritter, P.A. Algarabel, C. Marguina, A. del Moral, Phys. Rev. Lett. 76, 3392–3395 (1996). doi:10.1103/PhysRevLett.76.3392

    Article  PubMed  ADS  Google Scholar 

  12. E.A. Wood, Acta Cryst. 4, 353–362 (1951). doi:10.1107/S0365110X51001112

    Article  CAS  Google Scholar 

  13. J.M. Moreau, Mater. Res. Bull. 3, 427–432 (1968). doi:10.1016/0025-5408(68)90033-0

    Article  CAS  Google Scholar 

  14. R.D. Shannon, Inorg. Chem. 6, 1474–1478 (1967). doi:10.1021/ic50054a009

    Article  CAS  Google Scholar 

  15. D. Babel, Z. Anorg. Allg. Chem. 369, 117–130 (1969). doi:10.1002/zaac.19693690303

    Article  CAS  Google Scholar 

  16. A. Vedrine, J.P. Besse, G. Baud, M. Capestan, Rev. Chim. Miner. 7, 593–610 (1970)

    CAS  Google Scholar 

  17. J.H. Sohn, Y. Inaguma, S.O. Yoon, M. Itoh, T. Nakamura, S.J. Yoon, H.J. Kim, Jpn. J. Appl. Phys. 33, 5466–5470 (1994). doi:10.1143/JJAP.33.5466

    Article  CAS  ADS  Google Scholar 

  18. H.T. Kim, S. Nahm, J.D. Byun, J. Am. Ceram. Soc. 82, 3476–3480 (1999)

    Article  CAS  Google Scholar 

  19. H.T. Kim, J.C. Hwang, J.H. Nam, B.H. Choi, M.T. Lanagan, J. Mater. Res. 18, 1067–1072 (2003). doi:10.1557/JMR.2003.0147

    Article  ADS  CAS  Google Scholar 

  20. H.T. Kim, M.T. Lanagan, J. Am. Ceram. Soc. 86, 1874–1878 (2003). doi:10.1111/j.1151-2916.2003.tb03575.x

    Article  CAS  Google Scholar 

  21. Y.R. Wang, S.F. Wang, Y.M. Lin, Ceram. Int. 31, 905–909 (2005). doi:10.1016/j.ceramint.2004.09.017

    Article  CAS  Google Scholar 

  22. B.S. Mitchell, An Introduction to Materials Engineering and Science: For Chemical and Materials Engineers (Wiley, 2004)

  23. X.C. Liu, F. Gao, C.S. Tian, Mater. Res. Bull. 43, 693–699 (2008). doi:10.1016/j.materresbull.2007.03.029

    Article  CAS  Google Scholar 

  24. D. Kovacheva, K. Petrov, Solid State Ionics 109, 327–332 (1998). doi:10.1016/S0167–2738(97)00507-9

    Article  CAS  Google Scholar 

  25. N. Kinomura, N. Kumada, F. Muto, Mater. Res. Bull. 19, 299–304 (1984). doi:10.1016/0025-5408(84)90170-3

    Article  CAS  Google Scholar 

  26. N. Kumada, N. Ozawa, N. Kinomura, F. Muto, J. Solid State Chem. 57, 267–268 (1985). doi:10.1016/S0022-4596(85)80017-7

    Article  ADS  CAS  Google Scholar 

  27. N. Kumada, N. Kinomura, A.W. Sleight, Mater. Res. Bull. 35, 2397–2402 (2000). doi:10.1016/S0025-5408(00)00453-0

    Article  CAS  Google Scholar 

  28. Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, G. Zhang, J. Appl. Phys. 87, 4410–4414 (2000). doi:10.1063/1.373085

    Article  ADS  CAS  Google Scholar 

  29. V.B. Nalbandyan, M. Avdeev, A.A. Pospelov, Solid State Sci. 8, 1430–1437 (2006). doi:10.1016/j.solidstatesciences.2006.05.017

    Article  CAS  ADS  Google Scholar 

  30. P.B. Fabritchnyi, M.V. Korolenko, M.I. Afanasov, M. Danot, E. Janod, Solid State Commun. 125, 341–346 (2003). doi:10.1016/S0038-1098(02)00808-6

    Article  ADS  CAS  Google Scholar 

  31. R.P. Liferovich, R.H. Mitchell, Phys. Chem. Miner. 32, 442–449 (2005). doi:10.1007/s00269-005-0020-7

    Article  ADS  CAS  Google Scholar 

  32. Z.L. Wang, Z.C. Kang, Functional and Smart Materials (Plenum Press, New York, 1998)

    Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Project 60501015) and the Doctorate Foundation of Northwestern Polytechnical University under Grant CX200408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangChun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Hong, R. & Tian, C. Tolerance factor and the stability discussion of ABO3-type ilmenite. J Mater Sci: Mater Electron 20, 323–327 (2009). https://doi.org/10.1007/s10854-008-9728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9728-8

Keywords

Navigation