Tolerance factor and the stability discussion of ABO3-type ilmenite

Article

Abstract

The tolerance factor of ABO3-type ilmenite by analyzing the ABO3 ilmenite crystal structure is established. Combining with the electronegativity difference and octahedral factor of ABO3 structure, regularities governing the formation and the stability of ilmenite-type compounds are discussed. The tolerance factor equation was proved appropriate for ilmenite structure by analyzing the structure stability of some ilmenite compounds. According to the results of statistically analyzing the tolerance factor and electronegativity difference of the present ABO3-type ilmenite, the experience tolerance factor value and experience electronegativity difference value to form stable ilmenite compound were obtained, that is, > 0.80 and > 1.465, and the lowest limit of the octahedral factor \( \left( {R_M /R_{O^{2 - } } } \right) \) for ilmenite formation is 0.48.

References

  1. 1.
    J.D. Perkins, J.A. del Cueto, J.L. Alleman, C. Warmsingh, B.M. Keyes, L.M. Gedvilas, P.A. Parilla, B. To, D.W. Readey, D.S. Ginley, Thin Solid Films 411, 152–160 (2002). doi:10.1016/S0040-6090(02)00205-5 CrossRefADSGoogle Scholar
  2. 2.
    X.H. Wu, Y.D. Wang, Z.H. Tian, H.L. Liu, Z.L. Zhou, Y.F. Li, Solid-State Electron 46, 715–719 (2002). doi:10.1016/S0038-1101(01)00310-0 CrossRefADSGoogle Scholar
  3. 3.
    X.H. Wu, Y.D. Wang, H.L. Liu, Y.F. Li, Z.L. Zhou, Mater. Lett. 56, 732–736 (2002). doi:10.1016/S0167-577X(02)00604-3 CrossRefGoogle Scholar
  4. 4.
    Z.Y. Yuan, F. Huang, J.T. Sun, Y.H. Zhou, Chem. Lett. 31, 408–409 (2002). doi:10.1246/cl.2002.408 CrossRefGoogle Scholar
  5. 5.
    B. Wang, S.C. Chen, M. Greenblatt, J .Solid State Chem. 108, 184–188 (1994). doi:10.1006/jssc.1994.1028 CrossRefADSGoogle Scholar
  6. 6.
    X.C. Liu, F. Gao, L.L. Zhao, C.S. Tian, J. Alloys Compd. 436, 285–289 (2007). doi:10.1016/j.jallcom.2006.07.027 CrossRefGoogle Scholar
  7. 7.
    X.C. Liu, F. Gao, M. Zhao, C.S. Tian, Mater. Sci. Forum 546–549, 2215–2218 (2007)CrossRefGoogle Scholar
  8. 8.
    A.S. Bhalla, R. Guo, R. Roy, Mat. Res. Innovat. 4, 3–26 (2000). doi:10.1007/s100190000062 CrossRefGoogle Scholar
  9. 9.
    J.R. Sun, G.H. Rao, J.K. Liang, Appl. Phys. Lett. 70, 1900–1902 (1997). doi:10.1063/1.118725 CrossRefADSGoogle Scholar
  10. 10.
    H.Y. Hwang, S.W. Choeng, R.G. Radaelli, M. Marezio, B. Batlog, Phys. Rev. Lett. 75, 914–917 (1995). doi:10.1103/PhysRevLett.75.914 PubMedCrossRefADSGoogle Scholar
  11. 11.
    J.M. de Teresa, M.R. Ibarra, J. Garcia, J. Blasco, C. Ritter, P.A. Algarabel, C. Marguina, A. del Moral, Phys. Rev. Lett. 76, 3392–3395 (1996). doi:10.1103/PhysRevLett.76.3392 PubMedCrossRefADSGoogle Scholar
  12. 12.
    E.A. Wood, Acta Cryst. 4, 353–362 (1951). doi:10.1107/S0365110X51001112 CrossRefGoogle Scholar
  13. 13.
    J.M. Moreau, Mater. Res. Bull. 3, 427–432 (1968). doi:10.1016/0025-5408(68)90033-0 CrossRefGoogle Scholar
  14. 14.
    R.D. Shannon, Inorg. Chem. 6, 1474–1478 (1967). doi:10.1021/ic50054a009 CrossRefGoogle Scholar
  15. 15.
    D. Babel, Z. Anorg. Allg. Chem. 369, 117–130 (1969). doi:10.1002/zaac.19693690303 CrossRefGoogle Scholar
  16. 16.
    A. Vedrine, J.P. Besse, G. Baud, M. Capestan, Rev. Chim. Miner. 7, 593–610 (1970)Google Scholar
  17. 17.
    J.H. Sohn, Y. Inaguma, S.O. Yoon, M. Itoh, T. Nakamura, S.J. Yoon, H.J. Kim, Jpn. J. Appl. Phys. 33, 5466–5470 (1994). doi:10.1143/JJAP.33.5466 CrossRefADSGoogle Scholar
  18. 18.
    H.T. Kim, S. Nahm, J.D. Byun, J. Am. Ceram. Soc. 82, 3476–3480 (1999)CrossRefGoogle Scholar
  19. 19.
    H.T. Kim, J.C. Hwang, J.H. Nam, B.H. Choi, M.T. Lanagan, J. Mater. Res. 18, 1067–1072 (2003). doi:10.1557/JMR.2003.0147 CrossRefADSGoogle Scholar
  20. 20.
    H.T. Kim, M.T. Lanagan, J. Am. Ceram. Soc. 86, 1874–1878 (2003). doi:10.1111/j.1151-2916.2003.tb03575.x CrossRefGoogle Scholar
  21. 21.
    Y.R. Wang, S.F. Wang, Y.M. Lin, Ceram. Int. 31, 905–909 (2005). doi:10.1016/j.ceramint.2004.09.017 CrossRefGoogle Scholar
  22. 22.
    B.S. Mitchell, An Introduction to Materials Engineering and Science: For Chemical and Materials Engineers (Wiley, 2004)Google Scholar
  23. 23.
    X.C. Liu, F. Gao, C.S. Tian, Mater. Res. Bull. 43, 693–699 (2008). doi:10.1016/j.materresbull.2007.03.029 CrossRefGoogle Scholar
  24. 24.
    D. Kovacheva, K. Petrov, Solid State Ionics 109, 327–332 (1998). doi:10.1016/S0167–2738(97)00507-9 CrossRefGoogle Scholar
  25. 25.
    N. Kinomura, N. Kumada, F. Muto, Mater. Res. Bull. 19, 299–304 (1984). doi:10.1016/0025-5408(84)90170-3 CrossRefGoogle Scholar
  26. 26.
    N. Kumada, N. Ozawa, N. Kinomura, F. Muto, J. Solid State Chem. 57, 267–268 (1985). doi:10.1016/S0022-4596(85)80017-7 CrossRefADSGoogle Scholar
  27. 27.
    N. Kumada, N. Kinomura, A.W. Sleight, Mater. Res. Bull. 35, 2397–2402 (2000). doi:10.1016/S0025-5408(00)00453-0 CrossRefGoogle Scholar
  28. 28.
    Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, G. Zhang, J. Appl. Phys. 87, 4410–4414 (2000). doi:10.1063/1.373085 CrossRefADSGoogle Scholar
  29. 29.
    V.B. Nalbandyan, M. Avdeev, A.A. Pospelov, Solid State Sci. 8, 1430–1437 (2006). doi:10.1016/j.solidstatesciences.2006.05.017 CrossRefADSGoogle Scholar
  30. 30.
    P.B. Fabritchnyi, M.V. Korolenko, M.I. Afanasov, M. Danot, E. Janod, Solid State Commun. 125, 341–346 (2003). doi:10.1016/S0038-1098(02)00808-6 CrossRefADSGoogle Scholar
  31. 31.
    R.P. Liferovich, R.H. Mitchell, Phys. Chem. Miner. 32, 442–449 (2005). doi:10.1007/s00269-005-0020-7 CrossRefADSGoogle Scholar
  32. 32.
    Z.L. Wang, Z.C. Kang, Functional and Smart Materials (Plenum Press, New York, 1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations