A comparison of impression, indentation and impression-relaxation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solders at room temperature

Abstract

Creep behavior of Sn–9% Zn and Sn–8% Zn–3% Bi solder alloys was studied by impression, indentation, and impression-relaxation tests at room temperature (T > 0.6T m ) in order to evaluate the correspondence of the creep results obtained by different testing techniques, and to evaluate the effect of Bi on the creep response of the eutectic Sn–9Zn alloy. Stress exponent values were determined through these methods and in all cases the calculated exponents were in good agreement. The average stress exponents of 8.6 and 9.9, found respectively for the binary and ternary alloys, are close to those determined by room temperature conventional creep testing of the same materials reported in the literature. These exponents imply that dislocation creep is the possible mechanism during room temperature creep deformation of these alloys. The introduction of 3% Bi into the binary alloy enhanced the creep resistance due to both solid solutioning effect and sparse precipitation of Bi in the Sn matrix.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M.D. Mathew, H. Yang, S. Movva, K.L. Murty, Metall. Mater. Trans. 36A, 99–105 (2005). doi:10.1007/s11661-005-0142-z

    Article  CAS  Google Scholar 

  2. 2.

    K. Suganuma, K.S. Kim, J. Mater. Sci: Mater Electron 18, 121–127 (2007). doi:10.1007/s10854-006-9018-2

    Article  CAS  Google Scholar 

  3. 3.

    H. Mavoori, S. Jin, JOM 52(6), 30–32 (2000). doi:10.1007/s11837-000-0145-61

    Article  CAS  Google Scholar 

  4. 4.

    J. Yu, D.K. Joo, S.W. Shin, Acta Matter 50, 4315–4324 (2002). doi:10.1016/S1359-6454(02)00263-X

    Article  CAS  Google Scholar 

  5. 5.

    G. Cseh, J. Bar, H.J. Gudladt, J. Lendvai, A. Juhasz, Mater. Sci. Eng. A 272, 145–151 (1999). doi:10.1016/S0921-5093(99)00466-9

    CAS  Google Scholar 

  6. 6.

    J.C.M. Li, Mater. Sci. Eng. A 322, 23–42 (2002). doi:10.1016/S0921-5093(01)01116-9

    CAS  Google Scholar 

  7. 7.

    D. Dorner, K. Roller, B. Skrotzki, B. Stockhert, G. Eggler, Mater. Sci. Eng. A 257, 346–354 (2003). doi:10.1016/S0921-5093(03)00205-3

    Google Scholar 

  8. 8.

    A. Rezaee-Bazzaz, R. Mahmudi, Mater. Sci. Technol. 21, 861–866 (2005). doi:10.1179/174328405X46079

    Article  CAS  Google Scholar 

  9. 9.

    R. Mahmudi, A.R. Geranmayeh, A. Rezaee-Bazzaz, Mater. Sci. Eng. A 448, 287–293 (2007). doi:10.1016/j.msea.2006.10.092

    CAS  Google Scholar 

  10. 10.

    A. Juhasz, P. Tasnadi, I. Kovacs, J. Mater. Sci. Lett. 5, 35–36 (1986). doi:10.1007/BF01671427

    Article  CAS  Google Scholar 

  11. 11.

    A.R. Geranmayeh, R. Mahmudi, J. Mater. Sci. 40, 3361–3366 (2005). doi:10.1007/s10853-005-0421-5

    Article  CAS  Google Scholar 

  12. 12.

    R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, A. Khalatbari, J. Mater Sci: Mater Electron 18, 1071–1078 (2007). doi:10.1007/s10854-007-9124-9

    Article  CAS  Google Scholar 

  13. 13.

    R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, A. Khalatbari, Phys. Stat. Sol. (a) 204, 2302–2308 (2007). doi:10.1002/pssa.200622583

    Article  CAS  Google Scholar 

  14. 14.

    R. Mahmudi, A.R. Geranmayeh, M. Bakherad, M. Allami, Mater. Sci. Eng. A 457, 173–179 (2007). doi:10.1016/j.msea.2007.01.060

    CAS  Google Scholar 

  15. 15.

    P.T. Vianco, D.R. Frear, JOM 45(7), 14–19 (1993)

    CAS  Google Scholar 

  16. 16.

    K.L. Murty, F.M. Haggag, R.K. Mahidhara, J. Electron. Mater. 26, 839–846 (1997)

    Article  ADS  CAS  Google Scholar 

  17. 17.

    R.J. McCabe, M.E. Fine, Metall. Mater. Trans. 33A, 1531–1539 (2002). doi:10.1007/s11661-002-0075-8

    Article  CAS  Google Scholar 

  18. 18.

    T.K. Ha, C.S. Lee, Y.W. Chang, Scr. Mater. 35, 635–640 (1996). doi:10.1016/1359-6462(96)00184-4

    Article  CAS  Google Scholar 

  19. 19.

    M.W. Woodmansee, R.W. Neu, Mater. Sci. Eng. A 322, 79–88 (2002). doi:10.1016/S0921-5093(01)01120-0

    CAS  Google Scholar 

  20. 20.

    J.C.M. Li, J. Electron. Mater. 26, 827–832 (1997)

    Article  ADS  CAS  Google Scholar 

  21. 21.

    F. Yang, L. Peng, K. Okazaki, J. Mater. Res. 21, 2653–2659 (2006). doi:10.1557/jmr.2006.0335

    Article  ADS  CAS  Google Scholar 

  22. 22.

    R. Mahmudi, R. Roumina, B. Raeisinia, Mater. Sci. Eng. A 382, 15–22 (2004). doi:10.1016/j.msea.2004.05.078

    CAS  Google Scholar 

  23. 23.

    M. Fujiwara, M. Otsuka, Mater. Sci. Eng. A 319–321, 929–933 (2001). doi:10.1016/S0921-5093(01)01079-6

    Google Scholar 

  24. 24.

    G. Cseh, N.Q. Chinh, P. Tasnadi, A. Juhasz, J. Mater. Sci. 32, 5107–5111 (1997). doi:10.1023/A:1018665300227

    Article  CAS  Google Scholar 

  25. 25.

    C.H. Hsueh, P. Mira, P.F. Becher, J. Appl. Phys. 99, 113513 (2006). doi:10.1063/1.2200727

    Article  ADS  Google Scholar 

  26. 26.

    R. Mahmudi, A. Rezaee-Bazzaz, H.R. Banaie-Fard, J. Alloys Compd. 429, 192–197 (2007). doi:10.1016/j.jallcom.2006.04.037

    Article  CAS  Google Scholar 

  27. 27.

    C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, R. Mahajan, S.G. Jadhav, J. Mater. Sci. 42, 5182–5187 (2007). doi:10.1007/s10853-006-0542-5

    Article  CAS  Google Scholar 

  28. 28.

    A. Juhasz, P. Tasnadi, P. Szasvari, I. Kovacs, J. Mater. Sci. 21, 3287–3291 (1986). doi:10.1007/BF00553371

    Article  CAS  Google Scholar 

  29. 29.

    S.N. Chu, J.C.M. Li, J. Mater. Sci. 12, 2200–2208 (1977). doi:10.1007/BF00552241

    Article  CAS  Google Scholar 

  30. 30.

    P.M. Sargent, M.F. Ashby, Mater. Sci. Technol. 8, 594–601 (1992)

    CAS  Google Scholar 

  31. 31.

    F. Guiu, P.L. Pratt, Phys. Stat. Solidi. 6, 111–116 (1964). doi:10.1002/pssb.19640060108

    Article  Google Scholar 

  32. 32.

    G.S. Murty, J. Mater. Sci. 8, 611–617 (1973). doi:10.1007/BF00550469

    Article  CAS  Google Scholar 

  33. 33.

    R. Mahmudi, A.R. Geranmayeh, A. Rezaee-Bazzaz, J. Alloys Compd. 427, 124–129 (2007)

    Article  CAS  Google Scholar 

  34. 34.

    H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, M. Fine, J. Electron. Mater. 26, 783–790 (1997). doi:10.1007/s11664-997-0252-z

    Article  ADS  CAS  Google Scholar 

  35. 35.

    I. Shohji, C. Gagg, W.J. Plumbridge, J. Electron. Mater. 33, 923–927 (2004). doi:10.1007/s11664-004-0222-7

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Iran National Science Foundation (INSF) for providing financial support of this work under Grant No. 84094/26.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mahmudi, R., Geranmayeh, A.R., Noori, H. et al. A comparison of impression, indentation and impression-relaxation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solders at room temperature. J Mater Sci: Mater Electron 20, 312–318 (2009). https://doi.org/10.1007/s10854-008-9726-x

Download citation

Keywords

  • Solder Alloy
  • Creep Behavior
  • Stress Exponent
  • Dislocation Creep
  • Indentation Creep