Advertisement

A comparison of impression, indentation and impression-relaxation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solders at room temperature

  • R. MahmudiEmail author
  • A. R. Geranmayeh
  • H. Noori
  • H. Khanbareh
  • N. Jahangiri
Article

Abstract

Creep behavior of Sn–9% Zn and Sn–8% Zn–3% Bi solder alloys was studied by impression, indentation, and impression-relaxation tests at room temperature (T > 0.6T m ) in order to evaluate the correspondence of the creep results obtained by different testing techniques, and to evaluate the effect of Bi on the creep response of the eutectic Sn–9Zn alloy. Stress exponent values were determined through these methods and in all cases the calculated exponents were in good agreement. The average stress exponents of 8.6 and 9.9, found respectively for the binary and ternary alloys, are close to those determined by room temperature conventional creep testing of the same materials reported in the literature. These exponents imply that dislocation creep is the possible mechanism during room temperature creep deformation of these alloys. The introduction of 3% Bi into the binary alloy enhanced the creep resistance due to both solid solutioning effect and sparse precipitation of Bi in the Sn matrix.

Keywords

Solder Alloy Creep Behavior Stress Exponent Dislocation Creep Indentation Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the Iran National Science Foundation (INSF) for providing financial support of this work under Grant No. 84094/26.

References

  1. 1.
    M.D. Mathew, H. Yang, S. Movva, K.L. Murty, Metall. Mater. Trans. 36A, 99–105 (2005). doi: 10.1007/s11661-005-0142-z CrossRefGoogle Scholar
  2. 2.
    K. Suganuma, K.S. Kim, J. Mater. Sci: Mater Electron 18, 121–127 (2007). doi: 10.1007/s10854-006-9018-2 CrossRefGoogle Scholar
  3. 3.
    H. Mavoori, S. Jin, JOM 52(6), 30–32 (2000). doi: 10.1007/s11837-000-0145-61 CrossRefGoogle Scholar
  4. 4.
    J. Yu, D.K. Joo, S.W. Shin, Acta Matter 50, 4315–4324 (2002). doi: 10.1016/S1359-6454(02)00263-X CrossRefGoogle Scholar
  5. 5.
    G. Cseh, J. Bar, H.J. Gudladt, J. Lendvai, A. Juhasz, Mater. Sci. Eng. A 272, 145–151 (1999). doi: 10.1016/S0921-5093(99)00466-9 Google Scholar
  6. 6.
    J.C.M. Li, Mater. Sci. Eng. A 322, 23–42 (2002). doi: 10.1016/S0921-5093(01)01116-9 Google Scholar
  7. 7.
    D. Dorner, K. Roller, B. Skrotzki, B. Stockhert, G. Eggler, Mater. Sci. Eng. A 257, 346–354 (2003). doi: 10.1016/S0921-5093(03)00205-3 Google Scholar
  8. 8.
    A. Rezaee-Bazzaz, R. Mahmudi, Mater. Sci. Technol. 21, 861–866 (2005). doi: 10.1179/174328405X46079 CrossRefGoogle Scholar
  9. 9.
    R. Mahmudi, A.R. Geranmayeh, A. Rezaee-Bazzaz, Mater. Sci. Eng. A 448, 287–293 (2007). doi: 10.1016/j.msea.2006.10.092 Google Scholar
  10. 10.
    A. Juhasz, P. Tasnadi, I. Kovacs, J. Mater. Sci. Lett. 5, 35–36 (1986). doi: 10.1007/BF01671427 CrossRefGoogle Scholar
  11. 11.
    A.R. Geranmayeh, R. Mahmudi, J. Mater. Sci. 40, 3361–3366 (2005). doi: 10.1007/s10853-005-0421-5 CrossRefGoogle Scholar
  12. 12.
    R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, A. Khalatbari, J. Mater Sci: Mater Electron 18, 1071–1078 (2007). doi: 10.1007/s10854-007-9124-9 CrossRefGoogle Scholar
  13. 13.
    R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, A. Khalatbari, Phys. Stat. Sol. (a) 204, 2302–2308 (2007). doi: 10.1002/pssa.200622583 CrossRefGoogle Scholar
  14. 14.
    R. Mahmudi, A.R. Geranmayeh, M. Bakherad, M. Allami, Mater. Sci. Eng. A 457, 173–179 (2007). doi: 10.1016/j.msea.2007.01.060 Google Scholar
  15. 15.
    P.T. Vianco, D.R. Frear, JOM 45(7), 14–19 (1993)Google Scholar
  16. 16.
    K.L. Murty, F.M. Haggag, R.K. Mahidhara, J. Electron. Mater. 26, 839–846 (1997)CrossRefADSGoogle Scholar
  17. 17.
    R.J. McCabe, M.E. Fine, Metall. Mater. Trans. 33A, 1531–1539 (2002). doi: 10.1007/s11661-002-0075-8 CrossRefGoogle Scholar
  18. 18.
    T.K. Ha, C.S. Lee, Y.W. Chang, Scr. Mater. 35, 635–640 (1996). doi: 10.1016/1359-6462(96)00184-4 CrossRefGoogle Scholar
  19. 19.
    M.W. Woodmansee, R.W. Neu, Mater. Sci. Eng. A 322, 79–88 (2002). doi: 10.1016/S0921-5093(01)01120-0 Google Scholar
  20. 20.
    J.C.M. Li, J. Electron. Mater. 26, 827–832 (1997)CrossRefADSGoogle Scholar
  21. 21.
    F. Yang, L. Peng, K. Okazaki, J. Mater. Res. 21, 2653–2659 (2006). doi: 10.1557/jmr.2006.0335 CrossRefADSGoogle Scholar
  22. 22.
    R. Mahmudi, R. Roumina, B. Raeisinia, Mater. Sci. Eng. A 382, 15–22 (2004). doi: 10.1016/j.msea.2004.05.078 Google Scholar
  23. 23.
    M. Fujiwara, M. Otsuka, Mater. Sci. Eng. A 319–321, 929–933 (2001). doi: 10.1016/S0921-5093(01)01079-6 Google Scholar
  24. 24.
    G. Cseh, N.Q. Chinh, P. Tasnadi, A. Juhasz, J. Mater. Sci. 32, 5107–5111 (1997). doi: 10.1023/A:1018665300227 CrossRefGoogle Scholar
  25. 25.
    C.H. Hsueh, P. Mira, P.F. Becher, J. Appl. Phys. 99, 113513 (2006). doi: 10.1063/1.2200727 CrossRefADSGoogle Scholar
  26. 26.
    R. Mahmudi, A. Rezaee-Bazzaz, H.R. Banaie-Fard, J. Alloys Compd. 429, 192–197 (2007). doi: 10.1016/j.jallcom.2006.04.037 CrossRefGoogle Scholar
  27. 27.
    C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, R. Mahajan, S.G. Jadhav, J. Mater. Sci. 42, 5182–5187 (2007). doi: 10.1007/s10853-006-0542-5 CrossRefGoogle Scholar
  28. 28.
    A. Juhasz, P. Tasnadi, P. Szasvari, I. Kovacs, J. Mater. Sci. 21, 3287–3291 (1986). doi: 10.1007/BF00553371 CrossRefGoogle Scholar
  29. 29.
    S.N. Chu, J.C.M. Li, J. Mater. Sci. 12, 2200–2208 (1977). doi: 10.1007/BF00552241 CrossRefGoogle Scholar
  30. 30.
    P.M. Sargent, M.F. Ashby, Mater. Sci. Technol. 8, 594–601 (1992)Google Scholar
  31. 31.
    F. Guiu, P.L. Pratt, Phys. Stat. Solidi. 6, 111–116 (1964). doi: 10.1002/pssb.19640060108 CrossRefGoogle Scholar
  32. 32.
    G.S. Murty, J. Mater. Sci. 8, 611–617 (1973). doi: 10.1007/BF00550469 CrossRefGoogle Scholar
  33. 33.
    R. Mahmudi, A.R. Geranmayeh, A. Rezaee-Bazzaz, J. Alloys Compd. 427, 124–129 (2007)CrossRefGoogle Scholar
  34. 34.
    H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, M. Fine, J. Electron. Mater. 26, 783–790 (1997). doi: 10.1007/s11664-997-0252-z CrossRefADSGoogle Scholar
  35. 35.
    I. Shohji, C. Gagg, W.J. Plumbridge, J. Electron. Mater. 33, 923–927 (2004). doi: 10.1007/s11664-004-0222-7 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. Mahmudi
    • 1
    Email author
  • A. R. Geranmayeh
    • 2
  • H. Noori
    • 1
  • H. Khanbareh
    • 1
  • N. Jahangiri
    • 1
  1. 1.School of Metallurgical and Materials EngineeringUniversity of TehranTehranIran
  2. 2.Department of Mechanical EngineeringIslamic Azad UniversityTehranIran

Personalised recommendations