Skip to main content
Log in

Microstructure and dielectric properties of CBS glass-doped Sr0.5Ba0.5Nb2O6 ceramic system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

40CaO–20B2O3–40SiO2 (abbreviate as CBS) glass-doped Sr0.5Ba0.5Nb2O6 (SBN50) ceramics were fabricated by solid-state ceramic route. The effects of CBS glass addition on the firing, the phase formation, the microstructure and dielectric characterization of SBN50 ceramics were investigated. Results show that the density of the samples firstly increase and then slightly decrease with increasing CBS glass content and the highest density achieved has been 97% of the theoretical density for the sample with 2% (mass fraction) CBS glass. The sintering temperature was significantly reduced from 1,350 to 1,100 °C. X-ray diffraction analysis shows the single phase tungsten bronze type structure is preserved up to 2% CBS glass. However, the samples with more than 5% CBS glass are found to have a secondary phase CaNbO3. The diffuse character and the dielectric constant at room temperature increase as CBS glass content increases. The dielectric constant of the samples at the Curie temperature (T c) firstly increases and then decreases with increasing the content of CSB glass. Interestingly, the grain sizes of SBN phase are found to obviously increase with increase in CBS glass doping level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.M. Glass, J. Appl. Phys. 40, 4699–4713 (1969). doi:10.1063/1.1657277

    Article  ADS  CAS  Google Scholar 

  2. M.E. Lines A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  3. B. Jim’enez, C. Alemany, J. Mendiola, E. Maurer, J. Phys. Chem. Sol. 46, 1383–1386 (1985). doi:10.1016/0022-3697(85)90076-9

    Article  ADS  CAS  Google Scholar 

  4. S.T. Liu, R.B. Maciolek, J. Electron. Mater. 4, 91–100 (1975) doi:10.1007/BF02657838

    Article  ADS  CAS  Google Scholar 

  5. S. Nishiwaki, J. Takahashi, K. Kodaira, Jpn. J. Appl. Phys. 33, 5477–5481 (1994). doi:10.1143/JJAP.33.5477

    Article  ADS  CAS  Google Scholar 

  6. K. Umakantham, K. Chandramouli, G.N. Rao, A. Bhanumathi, Bull. Mater. Sci. 19, 345–355 (1996). doi:10.1007/BF02744671

    Article  CAS  Google Scholar 

  7. F. Guerrero, J. Portelles, H. Amor’ın, A. Fundora, J. Siqueiros, G. Hirata, J. Eur. Ceram. Soc. 18, 745–749 (1998). doi:10.1016/S0955-2219(97)00154-4

    Article  CAS  Google Scholar 

  8. F. Guerrero, J. Portelles, I. Gonz’alez, A. Fundora, H. Amor’ın, J. Siqueiros, R. Machorro, Solid State Commun. 101, 463–466 (1997). doi:10.1016/S0038-1098(96)00636-9

    Article  ADS  CAS  Google Scholar 

  9. H. Amor’ın, F. Guerrero, J. Portelles, I. Gonz’alez, A. Fundora, J. Siqueiros, J. Valenzuela, Solid State Commun. 106, 555–558 (1998). doi:10.1016/S0038-1098(98)00091-X

    Article  ADS  Google Scholar 

  10. Y.R. Wang, S.F. Wang, Y.M. Lin, Ceram. Int. 31, 905–909 (2005). doi:10.1016/j.ceramint.2004.09.017

    Article  CAS  Google Scholar 

  11. D.W. Kim, K.H. Ko, K.S. Hong, J. Am. Ceram. Soc. 84(6), 286–290 (2001)

    Google Scholar 

  12. Y.B. Chen, C.L. Huang, S.H. Lin, Mater. Lett. 60, 3591–3595 (2006). doi:10.1016/j.matlet.2006.03.067

    Article  CAS  Google Scholar 

  13. C. Nikasch, M. Gobbels, J. Cryst. Growth. 269, 324–332 (2004). doi:10.1016/j.jcrysgro.2004.04.037

    Article  ADS  CAS  Google Scholar 

  14. M.P. Trubelja, E. Ryba, D.K. Smith, J. Mater. Sci. 31, 1435–1438 (1996). doi:10.1007/BF00357850

    Article  CAS  Google Scholar 

  15. N. Mori, Y. Sugimoto, J. Harada, Y. Higuchi, J. Euro. Ceram. Soc. 26, 1925–1928 (2006). doi:10.1016/j.jeurceramsoc.2005.09.023

    Article  CAS  Google Scholar 

  16. P.K. Patro, A.R. Kulkarni, C.S. Harendranath, Mater. Res. Bull. 38, 249–259 (2003). doi:10.1016/S0025-5408(02)01025-5

    Article  CAS  Google Scholar 

  17. J. P′erez, H. Amor′in, J. Portelles, F. Guerrero, J.-C. M’Peko, J.M. Siqueiros. J. Electroceram. 6(2), 153–157 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Innovation Project of Guangxi Graduate Education, under grand 2007105950805M23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-hua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Gh., Qi, B. Microstructure and dielectric properties of CBS glass-doped Sr0.5Ba0.5Nb2O6 ceramic system. J Mater Sci: Mater Electron 20, 248–252 (2009). https://doi.org/10.1007/s10854-008-9711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9711-4

Keywords

Navigation