Skip to main content
Log in

Investigation of NiO x -based contacts on p-GaN

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study we investigated the effect of a NiO x layer on the electrical properties of oxidized Au/NiO x /p-GaN ohmic contacts. Au/NiO x layers with a small concentration of oxygen in NiO x were deposited on p-GaN by reactive DC magnetron sputtering and annealed in a mixture of O2 + N2, and in N2. Auger electron spectroscopy (AES) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling in combination with transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE SEM) and the circular transmission line method (CTLM) of contact resistance measurements of the contact structure with low content of oxygen in the NiO x layer have been used to explain the reduction of the contact resistance as a result of its anneal treatment. It has been found that creation of a metal/p-NiO/p-GaN contact structure due to annealing of the Au/NiO x /p-GaN structure in either N2 or O2 + N2 is the main mechanism that is responsible for the ohmic nature of the system. However, lowering of the contact resistance is similarly affected also by Ga atoms leaving the vacancies at the metal/p-GaN interface after diffusion of Ga into the metallic layer. The effect of various ways of cleaning the p-GaN surface prior to metallization on the contact resistance has also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Fan, S.N. Mohammad, W. Kim, Ö. Aktas, A.E. Botchkarev, H. Morkoc, Appl. Phys. Lett. 68, 1672 (1996)

    Article  CAS  Google Scholar 

  2. J.O. Song, S.J. Park, T.Y. Seong, Appl. Phys. Lett. 80, 3129 (2002)

    Article  CAS  Google Scholar 

  3. D.H. Youn, M. Hao, H. Sato, T. Sugahara, Y. Naoi, S. Sakai, Jpn. J. Appl. Phys. Part 1 37, 1768 (1998)

    Article  CAS  Google Scholar 

  4. L.C. Chen, C.Y. Hsu, W.H. Lan, S.Y. Teng, Solid-State Electron. 47, 1843 (2003)

    Article  CAS  Google Scholar 

  5. J.-O. Song, D.-S. Leem, T.-Y. Seong, Semicond. Sci. Technol. 19, 669 (2004)

    Article  CAS  Google Scholar 

  6. Q.Z. Liu, S.S. Lau, Solid-State Electron. 42, 667 (1998)

    Article  Google Scholar 

  7. J.L. Lee, J.K. Kim, J.W. Lee, Y.J. Park, T. Kim, Electrochem. Solid State Lett. 3, 53 (2000)

    Article  Google Scholar 

  8. J.S. Jang, K.H. Park, H.K. Jang, H.G. Kim, S.J. Park, J. Vac. Sci. Technol. B16, 3105 (1998)

    Google Scholar 

  9. R.H. Horng, D.S. Wuu, Y.Ch. Lien, W.H. Lan, Appl. Phys. Lett. 29, 2925 (2001)

    Article  Google Scholar 

  10. Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, M. Murakami, J. Electron. Mater. 28, 341 (1999)

    Article  CAS  Google Scholar 

  11. J.T. Trexler, S.J. Pearton, P.H. Holloway, M.G. Mier, K.R. Evans, Mat. Res. Soc. Symp. Proc. 449, 1091 (1997)

    CAS  Google Scholar 

  12. J.K. Ho, Ch.S. Jong, Ch.C. Chiu, Ch.N. Huang, C.Y. Chen, K.K. Shih, Appl. Phys. Lett. 74, 1275 (1999)

    Article  CAS  Google Scholar 

  13. J.K. Ho, Ch.S. Jong, Ch.C. Chiu, Ch.N. Huang, K.K. Shih, L.C. Chen, F.R. Chen, J.J. Kai, J. Appl. Phys. 86, 4491 (1999)

    Article  CAS  Google Scholar 

  14. T. Maeda, Y. Koide, M. Murakami, Appl. Phys. Lett. 75, 4145 (1999)

    Article  CAS  Google Scholar 

  15. D. Mistele, F. Fedler, H Klausing, T. Rotter, J. Stemmer, O.K. Semchinova, J. Aderhold, J. Crystal. Growth 230, 564 (2001)

    Article  CAS  Google Scholar 

  16. L.C. Chen, J.K. Ho, Ch.S. Jong, Ch.C. Chiu, K.K. Shih, F.R. Chen, J.J. Kai, L. Chang, J. Appl. Phys. 76, 3703 (2000)

    CAS  Google Scholar 

  17. H.W. Jang, S.Y. Kim, J.L. Lee, J. Appl. Phys. 94, 1748 (1748)

    Article  Google Scholar 

  18. R. Wenzel, G.G. Fischer, R. Schmid-Fetzer, Mater. Sci. Semicond. Process. 4, 357 (2001)

    Article  CAS  Google Scholar 

  19. M.R. Park, Y.J. Song, W.A. Anderson, ETRI J. 24, 349 (2002)

    Google Scholar 

  20. J. Narayan, H. Wang, T.H. Oh, H.K. Choi, J.C.C. Fan, Appl. Phys. Lett. 81, 3978 (2002)

    Article  CAS  Google Scholar 

  21. S.H. Wang, S.E. Mohney, R. Birkhahn, J. Appl. Phys. 91, 3711 (2002)

    Article  CAS  Google Scholar 

  22. J. Liday, I. Hotový, H. Sitter, K. Schmidegg, P. Vogrinčič, J. Breza, A. Bonnani, J. Electr. Eng. 56, 217–230 (2005)

    CAS  Google Scholar 

  23. I. Hotovy, J. Huran, L. Spiess, R. Capkovic, S. Hascik, Vacuum 58, 300 (2000)

    Article  CAS  Google Scholar 

  24. I. Hotovy, J. Liday, L. Spiess, H. Sitter, P. Vogrincic, Jpn. J. Appl. Phys. 42, L1178 (2003)

    Article  CAS  Google Scholar 

  25. C. J. Smithells (ed.). Metals Reference Book, 5th edn. (Butterworths, London & Boston, 1976), p. 1029

Download references

Acknowledgements

The work was supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and of the Slovak Academy of Sciences, No. 1/4079/07, 1/3095/06, 1/3076/06, R/S/FEI/04, Nem/Slov/1/DAAD and Slovak Research and Development Agency contract APVV–20–055405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liday, J., Hotový, I., Sitter, H. et al. Investigation of NiO x -based contacts on p-GaN. J Mater Sci: Mater Electron 19, 855–862 (2008). https://doi.org/10.1007/s10854-007-9520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9520-1

Keywords

Navigation