Skip to main content
Log in

Exciplex kinetics in nanocrystal organic light-emitting diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We studied the exciplex kinetics in nanocrystal organic light-emitting diodes (NC-OLEDs) where the emissive layer of inorganic nanocrystal quantum dots is sandwiched between the electron and hole transport layers of organic semiconductors at the organic–organic interface. We modeled exciplex generation, diffusion, recombination, and capture by nanocrystals via the Förster mechanism in NC-OLEDs. The exciplex kinetics determines the NC-OLED operation characterized by the quantum yield efficiency and emission intensity and it can be optimized by controlling the nanocrystal separation in the NC-OLED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Coe, W.-K. Woo, M. Bawendi, V. Bulovic, Nature 420, 800 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  2. N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Science 295, 1506 (2002)

    Article  PubMed  ADS  Google Scholar 

  3. J. Zhao, J. Zhang, C. Jiang, J. Bohnenberger, T. Basche, A. Mews, J. Appl. Phys. 96, 3206 (2004)

    Article  ADS  CAS  Google Scholar 

  4. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Nature 347, 539 (1990)

    Article  ADS  CAS  Google Scholar 

  5. A. Dodabalapur, Z. Bao, A. Makhija, J.G. Laquindanum, V.R. Raju, Y. Feng, H.E. Katz, J. Rogers, Appl. Phys. Lett. 73, 142 (1998)

    Article  ADS  CAS  Google Scholar 

  6. T. Tsutsui, Nature 420, 752 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  7. A. Javier, C.S. Yun, J. Sorena, G.F. Strouse, J. Phys. Chem. B 107, 435 (2003)

    Google Scholar 

  8. A. Shik, G. Konstantatos, E.H. Sargent, H.E. Ruda, J. Appl.Phys. 94, 4066 (2003)

    Article  ADS  CAS  Google Scholar 

  9. M. Drndic, M.V. Jarosz, N.Y. Morgan, M.A. Kastner, M.G. Bawendi, J. Appl. Phys. 92, 7498 (2002)

    Article  ADS  CAS  Google Scholar 

  10. D.D. Gebler, Y.Z. Wang, J.W. Blatchford, S.W. Jessen, D.K. Fu, T.M. Swager, A.G. MacDiarmid, A.J. Epstein, Appl. Phys. Lett. 70, 1644 (1997)

    Article  ADS  CAS  Google Scholar 

  11. C.I. Chao, S.A. Chen, Appl. Phys. Lett. 73, 426 (1998)

    Article  ADS  CAS  Google Scholar 

  12. K. Okumoto, Y. Shirota, J. Luminescence, 87–89, 1171 (2000)

    Article  Google Scholar 

  13. K. Kohary, V.M. Burlakov, D.G. Pettifor, J. Appl. Phys. 100, 114315 (2006)

    Article  ADS  Google Scholar 

  14. http://www.evidenttech.com/nanomaterials/evidots/quantum-dot-research-materials.php

Download references

Acknowledgements

The research is funded by Hewlett-Packard Laboratories (Palo Alto, California). KK acknowledges valuable discussions with V.M. Burlakov, D.G. Pettifor, J. Brug, CC Yang, and G. Gibson. The calculations were performed at the Materials Modelling Laboratory (University of Oxford).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztian Kohary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohary, K. Exciplex kinetics in nanocrystal organic light-emitting diodes. J Mater Sci: Mater Electron 20 (Suppl 1), 10–14 (2009). https://doi.org/10.1007/s10854-007-9420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9420-4

Keywords

Navigation