Skip to main content
Log in

Anisotropic lattice coherency of GaAs nanocrystals deposited on Si(100) surface by molecular beam epitaxy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lattice coherency and morphology of GaAs nanocrystals grown on Si(100) substrate have been studied by transmission electron microscope in order to see growth mechanism of the nanocrystals. GaAs nanocrystals consisting of four {111} facet planes and a rectangular basal plane with four sides along [01 \( \overline{1} \)] and [011] directions have grown on the Si surface. Either (011) or (0\( \overline{1} \)1) lattice planes along the minor axis on the rectangular basal plane in the GaAs nanocrystal are completely-coherent with {011} lattice planes in the Si substrate. On the other hand, another (0\( \overline{1} \)1) or (011) lattice planes along the major axis are partially-coherent with those in the Si substrate. When the lattice planes of the either (011) or (0\( \overline{1} \)1), which is randomly determined by local atomic structures, become partially-coherent with those in the Si substrate to relax accumulated lattice strain, the growth rate of nanocrystal is remarkably increased along the direction parallel to unstrained (011) or (0\( \overline{1} \)1) planes which prevents from each area of the strained {011} planes in the nanocrystals increasing. The anisotropic lattice coherency between the GaAs nanocrystals and the Si substrate causes the anisotropic morphology of the GaAs nanocrystals which is elongated the directions parallel to the strained {011} planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.H.M. García, A.P. Centeno, M. López, Thin Solid Films 433, 63 (2003)

    Article  Google Scholar 

  2. I. Mukhametzhanov, Z. Wei, R. Heitz, A. Madhukar, Appl. Phys. Lett. 75, 85 (1999)

    Article  CAS  Google Scholar 

  3. K. Yamaguchi, K. Yujobo, T. Kaizu, Jpn. J. Appl. Phys. 39, L1245 (2000)

    Article  CAS  Google Scholar 

  4. T. Kaizu, K. Yamaguchi, Jpn. J. Appl. Phys. 40, 1885 (2001)

    Article  CAS  Google Scholar 

  5. T. Kaizu, K. Yamaguchi, Jpn. J. Appl. Phys. 42, 4166 (2003)

    Article  CAS  Google Scholar 

  6. G. Costantini, A. Rastelli, C. Manzano, P.A. Diaz, G. Katsaros, R. Songmuang, O.G. Schmidt, H.V. Känel, K. Kern, J. Cryst. Growth 278, 38 (2005)

    Article  CAS  Google Scholar 

  7. F.M. Ross, J. Tersoff, R.M. Tromp, Phys. Rev. Lett. 80, 984 (1998)

    Article  CAS  Google Scholar 

  8. G.M. Ribeiro, T.I. Kamins, D.A.A. Ohlberg, R.S. Williams, Mater. Sci. Eng. B 67, 31 (1999)

    Article  Google Scholar 

  9. G. Capellini, M.D. Seta, F. Evangelisti, C. Spinella, Mater. Sci. Eng. B 101, 106 (2003)

    Article  Google Scholar 

  10. H. Usui, K. Ishiji, H. Yasuda, H. Mori, J. Cryst. Growth 290, 76 (2006)

    Article  Google Scholar 

  11. M. Kästner, B. Voigtländer, Phys. Rev. Lett. 82, 2745 (1999)

    Article  Google Scholar 

  12. N. Moll, A. Kley, E. Pehkle, M. Scheffler, Phys. Rev. B 54, 8844 (1996)

    Article  CAS  Google Scholar 

  13. D.J. Smith, D. Chandrasekhar, S.A. Chaparro, P.A. Crozier, J. Drucker, M. Floyd, M.R. McCartney, Y. Zhang, J. Cryst. Growth 259, 232 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was, in part, supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan under “Grant-in-Aid for Young Scientists (B)”, “Grant-in-Aid for Scientific Research” and “Nanotechnology Support Project”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Usui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usui, H., Yasuda, H. & Mori, H. Anisotropic lattice coherency of GaAs nanocrystals deposited on Si(100) surface by molecular beam epitaxy. J Mater Sci: Mater Electron 19, 131–135 (2008). https://doi.org/10.1007/s10854-007-9305-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9305-6

Keywords

Navigation