Skip to main content
Log in

Piezoelectric and optical properties of ZnO thin films deposited using various O2/(Ar+O2) gas ratios

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, ZnO thin films were fabricated on a Pt(111)/TiOx/SiO2/Si substrate using the RF magnetron sputtering method. Then, the effect of the crystallization orientation and microstructure on the piezoelectric and optical properties of the ZnO thin film was investigated for various O2/(Ar+O2) gas ratios. When the O2/(Ar+O2) gas ratio was 50%, the intensity of the (002) peak corresponding to the preferred orientation of the ZnO thin film was a maximum and the minimum FWHM value of 0.56° was observed. The surface roughness of the ZnO thin film measured using AFM also had a minimum value of 16.43 °C at an O2/(Ar+O2) gas ratio of 50%. The piezoelectric characteristics of the ZnO thin film were measured using the pneumatic loading method (PLM) and the corresponding constant had the largest value of 11.9 pC/N at an O2/(Ar+O2) gas ratio of 50%. The transmittance of the ZnO thin film obtained from the transmittance curve using a spectrophotometer was slightly greater than 80% in the human visible light region at an O2/(Ar+O2) gas ratio of 50%. By using the refractive index data obtained from the transmittance curve and the Sellmeir dispersion relation, we can also predict the refractive index at a wavelength of 400 nm. When the O2/(Ar+O2) gas ratio was 50%, the refractive index was 2.043 and, at other gas ratios, the corresponding refractive indices were 2.004∼2.006. The band gap energies of the ZnO thin film were 3.27∼3.33 eV depending on the O2/(Ar+O2) gas ratio and were little affected by the variation of the oxygen inflow volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.H. Lee, K.H. Ko, B.O. Park, J. Cryst. Growth 247, 119–125 (2003)

    Article  CAS  Google Scholar 

  2. X. Chen, W. Guan, G. Fang, X.Z. Zhao, Appl. Surf. Sci. 252, 1561–1567 (2005)

    Article  CAS  Google Scholar 

  3. J.J. Lee, Y.B. Kim, Y.S. Yoon, Appl. Surf. Sci. 244, 365–368 (2005)

    Article  CAS  Google Scholar 

  4. Y. Yoshino, M. Takeuchi, K. Inoue, T. Makino, S. Arai, T. Hata, Vacuum 66, 467–472 (2002)

    Article  CAS  Google Scholar 

  5. Z.Y. Wang, L.Z. Hu, J. Zhao, J. Sun, Z.J. Wang, Vacuum 78, 53–57 (2005)

    Article  CAS  Google Scholar 

  6. B Lin, Z. Fui, Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001)

    Article  CAS  Google Scholar 

  7. Y Igasaki, T. Naito, K. Murakami, W. Tomoda, Appl. Surf. Sci. 169–170, 512–516 (2001)

    Article  Google Scholar 

  8. HS Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246–1250 (2004)

    Article  CAS  Google Scholar 

  9. K.H. Yoon, J.Y. Cho, Mater. Res. Bull. 35, 39–46 (2000)

    Article  CAS  Google Scholar 

  10. K. Ogata, K. Sakurai, Sz. Fujita, Sg. Fujita, K. Matsushige, J. Cryst. Growth 214–215, 312–315 (2000)

    Article  Google Scholar 

  11. K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B.P. Zhang, Y. Segawa, Thin Solid Films 433, 131–134 (2003)

    Article  CAS  Google Scholar 

  12. R. Hong, H. Qi, J. Huang, H. He, Z. Fan, J. Shao, Thin Solid Films 473, 58–62 (2005)

    Article  CAS  Google Scholar 

  13. C.R. Aita, A.J. Purdes, R.J. Lad, P.D. Funkenbush, J. Appl. Phys. 51, 5533–5536 (1980)

    Article  CAS  Google Scholar 

  14. K. Ohji, O. Yamazaki, K. Wasa, S. Hayakawa, J. Vac. Sci. Technol. 15, 1601–1604 (1978)

    Article  CAS  Google Scholar 

  15. D.G. Kim in The 11th International Symposium on Applications of Ferroelectrics, Montereux, August, p. 137 (1998)

  16. D.G. Kim, Integrated Ferroelectrics 24, 107 (1999)

    CAS  Google Scholar 

  17. F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, Y.C. Kim, J. Cryst. Growth 277, 284–292 (2005)

    Article  CAS  Google Scholar 

  18. N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem. 99, 16646–16654 (1995)

    Article  CAS  Google Scholar 

  19. A. Mosbah, A. Moustaghfir, S. Abed, N. Bouhssira, M.S. Aida, E. Tomasella, M. Jacquet, Surf. Coat. Tech. 200, 293–296 (2005)

    Article  CAS  Google Scholar 

  20. F. Chaabouni , M. Abaab, B. Rezig, Mater. Sci. Eng. B 109, 236–240 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.J., Joung, Y.H., Chang, D.H. et al. Piezoelectric and optical properties of ZnO thin films deposited using various O2/(Ar+O2) gas ratios. J Mater Sci: Mater Electron 18, 647–653 (2007). https://doi.org/10.1007/s10854-007-9142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9142-7

Keywords

Navigation