Tin pest issues in lead-free electronic solders

Abstract

Tin pest is the product of the β → α allotropic transition at 13.2°C in pure tin. It is a brittle crumbly material, often responsible for the total disintegration of the sample. The transformation involves nucleation and growth, with an incubation period requiring months or years for completion. Experimental observations reveal a substantial inconsistency and an incomplete understanding of the process. Some alloy additions promote tin pest by reducing the incubation time, whereas others retard or inhibit its formation. Traditional solder alloys have generally been immune to tin pest in service due to the presence of lead, and bismuth and antimony as common impurities. However, the new generation of lead-free solders are more dilute—closely resembling tin. A much debated question is the susceptibility of these alloys to tin pest. Bulk samples of tin-0.5 copper solder undergo the transition at  −18°C although not at  −40°C after five years exposure. Other lead-free alloys (Sn–3.5Ag, Sn–3.8Cu–0.7Cu and Sn–Zn–Bi) are immune from tin pest after a similar period. Large scale model joints exhibit tin pest but it appears that actual joints may be resistant due to the limited free solder surface available and the constraint of intermetallic compounds and components. It seems likely that impurities are essential protection against tin pest, but for long term applications there is no certainty that tin pest and joint deterioration will never occur.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    ‘Engineering the Future’, Open University Course, T173, Block 3, Part 5, ‘Lead-free solders’, (2001)

  2. 2.

    W.J. Plumbridge, R.J. Matela, A. Westwater, Structural Integrity and Reliability in the Electronics – Enhancing Performance in a Lead-Free Environment (Kluwer, Dordrecht, Boston, London, 2003) Chapter 1

  3. 3.

    M.R. Harrison, J.H. Vincent, H.A.H. Steen, Solder. Surf. M. Technol. 13, 21 (2001)

    CAS  Google Scholar 

  4. 4.

    B. Richards, C.L. Levogner, C.P. Hunt, K. Nimmo, S. Peters, P. Cusack, Lead-Free Soldering – An Analysis of the Current Status of Lead-Free Soldering (Dept. Trade and Ind.,1999)

  5. 5.

    W.J. Plumbridge, C.R. Gagg, J. Mater. Sci.- Mater El. 10, 461 (1999)

    Article  CAS  Google Scholar 

  6. 6.

    W.J. Plumbridge, C.R. Gagg, S. Peters, J. Electron. Mater. 30, 1178 (2001)

    CAS  Google Scholar 

  7. 7.

    ‘The Properties Of Tin’, (Tin Research Inst., Publication 218, 1954)

  8. 8.

    W.G. Burgers, L.J. Groen, Faraday Soc. Discussions 23, 183 (1957)

    Article  Google Scholar 

  9. 9.

    O.L. Erdmann, J. Prakt. Chem. 52, 428 (1851)

    Article  Google Scholar 

  10. 10.

    G.V. Raynor, R.W. Smith, Proc. Roy. Soc. 244A, 101 (1958)

    Google Scholar 

  11. 11.

    F. Vnuk, Metal Congress 45, 175 (1975)

    Google Scholar 

  12. 12.

    G. Tammann, K.L. Dreyer, Z. Anorg. Chem. 199, 97 (1931)

    Article  CAS  Google Scholar 

  13. 13.

    E.S. Hedges, Tin and its Alloys (Edward Arnold Ltd, London, 1960)

    Google Scholar 

  14. 14.

    R.M. Macintosh, Tin Uses 6, 72 (1966)

    Google Scholar 

  15. 15.

    J.L. Gissy, J.G. Kuva, Battelle Memorial Inst. Columbus Ohio Report (1960)

  16. 16.

    E. Cohen, A.K.W.A. van Lieshout, Proc. K. Akad. Wet., Amsterdam 39, 1174 (1936)

    CAS  Google Scholar 

  17. 17.

    Y.J. Joo, T. Takemoto, Mater. Lett. 3678, 793 (2002)

    Article  Google Scholar 

  18. 18.

    A.A. Matvienko, A.A. Sidelnikov, J. Alloys Comp. 252, 172 (1997)

    Article  CAS  Google Scholar 

  19. 19.

    D.R.G. Mitchell, S.E. Donnelly, Philos Mag. A 63, 747 (1991)

    CAS  Google Scholar 

  20. 20.

    K. Ojima, A. Takasaki (1993). Philos Mag. Lett. A 68, 237

    CAS  Google Scholar 

  21. 21.

    N. Blake, R.W. Smith, J. Mater. Sci. Lett. 5, 103 (1986)

    Article  CAS  Google Scholar 

  22. 22.

    M. Kaya, F. Vnuk, R.W. Smith, Proc. Conf. on Phase Transformations, (Cambridge, Inst. of Metals, 1988), p. 647

  23. 23.

    F. Vnuk, A. De Monte, R.W. Smith, J. Appl. Phys. 55, 4171 (1984)

    Article  CAS  Google Scholar 

  24. 24.

    E. Cohen, W.A.T. Cohen de Meester, J. Landsman, Proc. K. Akad. Wet., Amsterdam 40, 746 (1937)

    CAS  Google Scholar 

  25. 25.

    E. Cohen, A.K.W.A. van Lieshout, Proc. K. Akad. Wet., Amsterdam 39, 352 (1936)

    CAS  Google Scholar 

  26. 26.

    E. Cohen, A.K.W.A. van Lieshout, W.A.T. Cohen der Meester, Z. Phys. Chem. 178, 221 (1937)

    Google Scholar 

  27. 27.

    R.R. Rogers, J.F. Fydell, J. Electrochem. Soc. 100, 383 (1953)

    CAS  Google Scholar 

  28. 28.

    C.W. Mason, W.D. Forgeng, Metals Alloys 6, 87 (1935)

    CAS  Google Scholar 

  29. 29.

    E. Cohen, W.A.T. Cohen der Meester, Proc. K. AKAD. Wet. Amsterdam 51, 860 (1938)

    Google Scholar 

  30. 30.

    W.L. Williams, Symposium on Solder (ASTM STP 189, Philadelphia, 1956), p. 149

  31. 31.

    F. Vnuk, A. De Monte, R.W. Smith, Mater. Lett. 2, 67 (1983)

    Article  CAS  Google Scholar 

  32. 32.

    W.M.T. Gallerneault, F. Vnuk, R.W. Smith, J. Appl. Phys. 54, 4200 (1983)

    Article  CAS  Google Scholar 

  33. 33.

    G. Tammann, R. Kohihass, Z. Anorg. Chem. 199, 209 (1931)

    Article  CAS  Google Scholar 

  34. 34.

    E. Cohen, A.K.W.A. van Lieshout, Proc. K. Akad. Wet., Amsterdam 39, 596 (1936)

    Google Scholar 

  35. 35.

    A. Bornemann, Symposium on Solder, (ASTM STP 189, Philadelphia, 1956), p. 129

  36. 37.

    Performance Test Methods and Qualification Requirements for Surface Mount Attachments, (IPC – 9701, January 2002)

  37. 38.

    The Solder Research Group at the Open University, Update Report (http://www.materials.open.ac.uk/srg/srg-index.html) (2005)

  38. 39.

    Y. Kariya, C.R. Gagg, W.J. Plumbridge, Solder. Surf. M. Technol. 13, 39 (2000)

    Google Scholar 

  39. 40.

    Y. Kariya, N. Williams, C.R. Gagg, W.J. Plumbridge, J. Mater. 53, 39 (2001)

    CAS  Google Scholar 

  40. 42.

    C.E. Homer, H. Plummer, J. Inst. Met. 64, 169 (1939)

    Google Scholar 

  41. 43.

    K.W. Moon, W.J. Boettinger, U.R. Kattnewv, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)

    CAS  Google Scholar 

  42. 44.

    L. Snugovsky, C. Cermignani, D.D. Perovic, J.W. Rutter, J. Electron. Mater. 33, 1313 (2004)

    CAS  Google Scholar 

  43. 45.

    L. Snugovsky, P. Snugovsky, D.D. Perovic, J.W. Rutter, Mater. Sci. Technol. 21, 61 (2005)

    Article  CAS  Google Scholar 

  44. 47.

    W.J. Plumbridge, R.J. Matela, A. Westwater, Structural Integrity and Reliability in the Electronics – Enhancing Performance in a Lead-Free Environment, (Kluwer, Dordrecht, Boston, London, 2003) Chapter 2

  45. 48.

    E.S. Hedges, J.Y. Higgs, Nature 169, 621 (1952)

    Article  CAS  Google Scholar 

  46. 49.

    A. Brewin, Sixth European Surface Mount Conference, Brighton Workshop 6, November, (2004)

  47. 50.

    R. Lasky, Proc. Surface Mount Technology Assoc. Int. Conf., Chicago, Sept, (2004)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. J. Plumbridge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Plumbridge, W.J. Tin pest issues in lead-free electronic solders. J Mater Sci: Mater Electron 18, 307–318 (2007). https://doi.org/10.1007/s10854-006-9025-3

Download citation

Keywords

  • Solder Joint
  • Solder Alloy
  • Plastic Zone Size
  • Large Volume Change
  • Allotropic Transition