Tin pest issues in lead-free electronic solders

  • W. J. PlumbridgeEmail author


Tin pest is the product of the β → α allotropic transition at 13.2°C in pure tin. It is a brittle crumbly material, often responsible for the total disintegration of the sample. The transformation involves nucleation and growth, with an incubation period requiring months or years for completion. Experimental observations reveal a substantial inconsistency and an incomplete understanding of the process. Some alloy additions promote tin pest by reducing the incubation time, whereas others retard or inhibit its formation. Traditional solder alloys have generally been immune to tin pest in service due to the presence of lead, and bismuth and antimony as common impurities. However, the new generation of lead-free solders are more dilute—closely resembling tin. A much debated question is the susceptibility of these alloys to tin pest. Bulk samples of tin-0.5 copper solder undergo the transition at  −18°C although not at  −40°C after five years exposure. Other lead-free alloys (Sn–3.5Ag, Sn–3.8Cu–0.7Cu and Sn–Zn–Bi) are immune from tin pest after a similar period. Large scale model joints exhibit tin pest but it appears that actual joints may be resistant due to the limited free solder surface available and the constraint of intermetallic compounds and components. It seems likely that impurities are essential protection against tin pest, but for long term applications there is no certainty that tin pest and joint deterioration will never occur.


Solder Joint Solder Alloy Plastic Zone Size Large Volume Change Allotropic Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ‘Engineering the Future’, Open University Course, T173, Block 3, Part 5, ‘Lead-free solders’, (2001)Google Scholar
  2. 2.
    W.J. Plumbridge, R.J. Matela, A. Westwater, Structural Integrity and Reliability in the Electronics – Enhancing Performance in a Lead-Free Environment (Kluwer, Dordrecht, Boston, London, 2003) Chapter 1Google Scholar
  3. 3.
    M.R. Harrison, J.H. Vincent, H.A.H. Steen, Solder. Surf. M. Technol. 13, 21 (2001)Google Scholar
  4. 4.
    B. Richards, C.L. Levogner, C.P. Hunt, K. Nimmo, S. Peters, P. Cusack, Lead-Free Soldering – An Analysis of the Current Status of Lead-Free Soldering (Dept. Trade and Ind.,1999)Google Scholar
  5. 5.
    W.J. Plumbridge, C.R. Gagg, J. Mater. Sci.- Mater El. 10, 461 (1999)CrossRefGoogle Scholar
  6. 6.
    W.J. Plumbridge, C.R. Gagg, S. Peters, J. Electron. Mater. 30, 1178 (2001)Google Scholar
  7. 7.
    ‘The Properties Of Tin’, (Tin Research Inst., Publication 218, 1954)Google Scholar
  8. 8.
    W.G. Burgers, L.J. Groen, Faraday Soc. Discussions 23, 183 (1957)CrossRefGoogle Scholar
  9. 9.
    O.L. Erdmann, J. Prakt. Chem. 52, 428 (1851)CrossRefGoogle Scholar
  10. 10.
    G.V. Raynor, R.W. Smith, Proc. Roy. Soc. 244A, 101 (1958)Google Scholar
  11. 11.
    F. Vnuk, Metal Congress 45, 175 (1975)Google Scholar
  12. 12.
    G. Tammann, K.L. Dreyer, Z. Anorg. Chem. 199, 97 (1931)CrossRefGoogle Scholar
  13. 13.
    E.S. Hedges, Tin and its Alloys (Edward Arnold Ltd, London, 1960) Google Scholar
  14. 14.
    R.M. Macintosh, Tin Uses 6, 72 (1966)Google Scholar
  15. 15.
    J.L. Gissy, J.G. Kuva, Battelle Memorial Inst. Columbus Ohio Report (1960)Google Scholar
  16. 16.
    E. Cohen, A.K.W.A. van Lieshout, Proc. K. Akad. Wet., Amsterdam 39, 1174 (1936)Google Scholar
  17. 17.
    Y.J. Joo, T. Takemoto, Mater. Lett. 3678, 793 (2002)CrossRefGoogle Scholar
  18. 18.
    A.A. Matvienko, A.A. Sidelnikov, J. Alloys Comp. 252, 172 (1997)CrossRefGoogle Scholar
  19. 19.
    D.R.G. Mitchell, S.E. Donnelly, Philos Mag. A 63, 747 (1991)Google Scholar
  20. 20.
    K. Ojima, A. Takasaki (1993). Philos Mag. Lett. A 68, 237Google Scholar
  21. 21.
    N. Blake, R.W. Smith, J. Mater. Sci. Lett. 5, 103 (1986)CrossRefGoogle Scholar
  22. 22.
    M. Kaya, F. Vnuk, R.W. Smith, Proc. Conf. on Phase Transformations, (Cambridge, Inst. of Metals, 1988), p. 647Google Scholar
  23. 23.
    F. Vnuk, A. De Monte, R.W. Smith, J. Appl. Phys. 55, 4171 (1984)CrossRefGoogle Scholar
  24. 24.
    E. Cohen, W.A.T. Cohen de Meester, J. Landsman, Proc. K. Akad. Wet., Amsterdam 40, 746 (1937)Google Scholar
  25. 25.
    E. Cohen, A.K.W.A. van Lieshout, Proc. K. Akad. Wet., Amsterdam 39, 352 (1936)Google Scholar
  26. 26.
    E. Cohen, A.K.W.A. van Lieshout, W.A.T. Cohen der Meester, Z. Phys. Chem. 178, 221 (1937)Google Scholar
  27. 27.
    R.R. Rogers, J.F. Fydell, J. Electrochem. Soc. 100, 383 (1953)Google Scholar
  28. 28.
    C.W. Mason, W.D. Forgeng, Metals Alloys 6, 87 (1935)Google Scholar
  29. 29.
    E. Cohen, W.A.T. Cohen der Meester, Proc. K. AKAD. Wet. Amsterdam 51, 860 (1938)Google Scholar
  30. 30.
    W.L. Williams, Symposium on Solder (ASTM STP 189, Philadelphia, 1956), p. 149Google Scholar
  31. 31.
    F. Vnuk, A. De Monte, R.W. Smith, Mater. Lett. 2, 67 (1983)CrossRefGoogle Scholar
  32. 32.
    W.M.T. Gallerneault, F. Vnuk, R.W. Smith, J. Appl. Phys. 54, 4200 (1983)CrossRefGoogle Scholar
  33. 33.
    G. Tammann, R. Kohihass, Z. Anorg. Chem. 199, 209 (1931)CrossRefGoogle Scholar
  34. 34.
    E. Cohen, A.K.W.A. van Lieshout, Proc. K. Akad. Wet., Amsterdam 39, 596 (1936)Google Scholar
  35. 35.
    A. Bornemann, Symposium on Solder, (ASTM STP 189, Philadelphia, 1956), p. 129Google Scholar
  36. 37.
    Performance Test Methods and Qualification Requirements for Surface Mount Attachments, (IPC – 9701, January 2002)Google Scholar
  37. 38.
    The Solder Research Group at the Open University, Update Report ( (2005)
  38. 39.
    Y. Kariya, C.R. Gagg, W.J. Plumbridge, Solder. Surf. M. Technol. 13, 39 (2000)Google Scholar
  39. 40.
    Y. Kariya, N. Williams, C.R. Gagg, W.J. Plumbridge, J. Mater. 53, 39 (2001)Google Scholar
  40. 42.
    C.E. Homer, H. Plummer, J. Inst. Met. 64, 169 (1939)Google Scholar
  41. 43.
    K.W. Moon, W.J. Boettinger, U.R. Kattnewv, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)Google Scholar
  42. 44.
    L. Snugovsky, C. Cermignani, D.D. Perovic, J.W. Rutter, J. Electron. Mater. 33, 1313 (2004)Google Scholar
  43. 45.
    L. Snugovsky, P. Snugovsky, D.D. Perovic, J.W. Rutter, Mater. Sci. Technol. 21, 61 (2005)CrossRefGoogle Scholar
  44. 47.
    W.J. Plumbridge, R.J. Matela, A. Westwater, Structural Integrity and Reliability in the Electronics – Enhancing Performance in a Lead-Free Environment, (Kluwer, Dordrecht, Boston, London, 2003) Chapter 2Google Scholar
  45. 48.
    E.S. Hedges, J.Y. Higgs, Nature 169, 621 (1952)CrossRefGoogle Scholar
  46. 49.
    A. Brewin, Sixth European Surface Mount Conference, Brighton Workshop 6, November, (2004)Google Scholar
  47. 50.
    R. Lasky, Proc. Surface Mount Technology Assoc. Int. Conf., Chicago, Sept, (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.The Open UniversityMilton KeynesUK

Personalised recommendations