Skip to main content

The effects of suppressed beta tin nucleation on the microstructural evolution of lead-free solder joints

Abstract

Most lead-free solders comprise tin (Sn) as the majority component, and nominally pure β-Sn is the majority phase in the microstructure of these solders. It is well established that nucleation of β-Sn from Sn-base liquid alloys is generally difficult. Delays in the onset of β-Sn formation have a profound effect upon the microstructural development of solidified Sn-base alloys. Utilizing stable and metastable phase diagrams, along with solidification principles, the effects of inhibited β-Sn nucleation on microstructural development are discussed, employing the widely studied Sn–Ag–Cu (SAC) alloy as a model system. This analysis shows that the main effect of suppressed β-Sn nucleation on near-eutectic SAC solders is to increase the number and/or volume fraction of primary or primary-like microconstituents, while simultaneously decreasing the volume fraction of eutectic microconstituent. General strategies are outlined for avoiding unwanted microconstituent development in these materials, including the use of metastable phase diagrams for selecting alloy compositions, employment of inoculants to promote β-Sn nucleation, and utilization of high cooling rates to limit solid phase growth. Finally, areas for future research on the development of inoculated Sn-base solder alloys are outlined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. C.J. Evans, Metallurgia 51, 11 (1984)

    Google Scholar 

  2. C.M. Miller, I.E. Anderson, J.F. Smith, J. Electron. Mater. 23, 595 (1994)

    CAS  Google Scholar 

  3. J. Bath, C. Handwerker and E. Bradley, Circuits Assembly (May 2000) 31.

  4. D. Suraski, K. Seeling, IEEE Trans. Electron. Packag. Manuf. 24, 244 (2001)

    Article  CAS  Google Scholar 

  5. I.E. Anderson, J.C. Foley, B.A. Cook, J.L. Harringa, R.L.Terpstra, O. Unal, J. Electron. Mater. 30, 1050 (2001)

    CAS  Google Scholar 

  6. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park OH, 1990)

    Google Scholar 

  7. A. Ohno, T. Motegi, J. Japan Inst. Metals 37, 777 (1973)

    CAS  Google Scholar 

  8. K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)

    CAS  Google Scholar 

  9. S.K. Kang, W.K. Choi, D.-Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K.J. Puttlitz, Proc. 53rd ECTC Conf. (IEEE, Piscataway, NJ, 2003), p. 64

    Book  Google Scholar 

  10. B. Vonnegut, J. Colloid. Sci. 3, 563 (1948)

    Article  CAS  Google Scholar 

  11. G.M. Pound, V.K. LA Mer, J. Amer. Chem. Soc. 74, 2323(1952)

    Article  CAS  Google Scholar 

  12. M. Volmer, A. Weber, Z. Phys. Chem. 119, 227 (1926)

    Google Scholar 

  13. R. Becker, W. Döring, Ann. Phys. 24, 719 (1935)

    CAS  Google Scholar 

  14. D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)

    Article  CAS  Google Scholar 

  15. J.H. Holloman, D. Turnbull, Progress Metal Phys. 4, 333 (1953)

    Article  Google Scholar 

  16. J.H. Perepezko, Mater. Sci. Eng. 65, 125 (1984)

    Article  CAS  Google Scholar 

  17. K.F. Kelton, in Solid State Physics, vol. 45, ed. by F. Seitz, D. Turnbull (1991), p. 75.

  18. O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th edn. (Pergamon Press, Oxford UK 1979)

    Google Scholar 

  19. D. Turnbull, J. Appl. Phys. 21, 1022 (1950)

    Article  CAS  Google Scholar 

  20. D. Lewis, S. Allen, M. Notis, A. Scotch, J. Electron. Mater. 31, 161 (2002)

    CAS  Google Scholar 

  21. D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.-K. Choi, D.-Y. Shi, C. Goldsmith, K.J. Puttlitz, J. Mater. Res. 17, 2775 (2002)

    CAS  Google Scholar 

  22. K.L. Buckmaster, J.J. Dziedzic, M.A. Masters, B.D. Poquette, G.W. Tormoen, D. Swenson, D.W. Henderson, T. Gosselin, S.K. Kang, D.Y. Shih and K.J. Puttlitz, Presented at the TMS 2003 Fall Meeting, Chicago, IL, November 2003.

  23. A. LaLonde, D. Emelander, J. Jeannette, C. Larson, W. Rietz, D. Swenson, D.W. Henderson, J. Electron. Mater. 33, 1545 (2004)

    CAS  Google Scholar 

  24. L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, E.J. Cotts, J. Electron. Mater. 33, 1429 (2004)

    CAS  Google Scholar 

  25. D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, S.K. Kang, P. Lauro, D.-Y. Shih, C. Goldsmith, K.J. Puttlitz, J. Mater. Res. 19, 1608 (2004)

    Article  CAS  Google Scholar 

  26. M.E. Loomans, M.E. Fine, Metall. Mater. Trans. A 31A, 155 (2000)

    CAS  Google Scholar 

  27. F.R. Mollard, M.C. Flemings, TMS AIME 239, 1526 (1967)

    Google Scholar 

  28. D.G. Mccartney, J.D. Hunt R.M. Jordan, Metall. Trans. 11A (1980)

  29. T. Himemiya, T. Umeda, Mater. Trans. JIM 40, 665 (1999)

    CAS  Google Scholar 

  30. J.D. Hunt, K.A. Jackson, Trans. TMS AIME 236, 843 (1966)

    CAS  Google Scholar 

  31. W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, Acta Metall. 1, 428 (1953)

    Article  CAS  Google Scholar 

  32. A. Rosenberg, W.G. Winegard, Acta Metall. 2, 342 (1954)

    Article  Google Scholar 

  33. K.S. Kim, S.H. Huh, K. Suganuma, Mater. Sci. Engin. A A333, 106 (2002)

    Article  Google Scholar 

  34. Telang A.U., Bieler T.R., Choi S., Subramanian K.N. (2002) J. Mater. Res. 17: 2294

    CAS  Google Scholar 

  35. A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.P. Lehman Y. Xing, E.J. Cotts, J. Electron. Mater. 33, 1412 (2004)

    CAS  Google Scholar 

  36. E.O. Hall, Twinning and Diffusionless Transformations in Metals. (Buttersworth Scientific Publications, London, UK, 1954)

    Google Scholar 

  37. E. Teghtsoonian, B. Chalmers, Can. J. Phys. 30, 388 (1952)

    CAS  Google Scholar 

  38. J.W. Christian, The Theory of Transformations in Metals and Alloys. (Pergamon Press, Oxford UK, 1965)

    Google Scholar 

  39. F.A. Crossley, L.F. Mondolfo, Trans. TMS AIME 191, 1143 (1951)

    Google Scholar 

  40. M. McCormack, S. Jin, G.W. Kammlott, H.S. Chen, Appl. Phys. Lett. 63, 15 (1993)

    Article  CAS  Google Scholar 

  41. M. McCormack, S. Jin, J. Electron. Mater. 23, 635 (1994)

    CAS  Google Scholar 

  42. S.K. Kang, D.-Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.-I. Cho, J. Yu, W.K. Choi, J. Metals 56, 34 (2004)

    CAS  Google Scholar 

  43. I.E. Anderson, B.A. Cook, J. Harringa, R.L. Terpstra, J. Electron. Mater. 31, 1166 (2002)

    CAS  Google Scholar 

  44. Z.G. Chen, Y.W. Shi, Z.D. Xia, Y.F. Yan, J. Electron. Mater. 31, 1122 (2002)

    CAS  Google Scholar 

  45. P. Harris, Surface Mount Tech. (U.K.), 11 (1999) 46.

  46. J.S. Kirkaldy, D.J. Young, Diffusion in the Condensed State. (Inst. Of Metals, London UK, 1985)

    Google Scholar 

  47. K.-L. Lin, H.-M. Hsu, J. Electron. Mater. 30, 1068 (2001)

    CAS  Google Scholar 

  48. C. Wagner, J. Electrochem. Soc. 103, 571 (1956)

    CAS  Google Scholar 

  49. C.-M. Chuang, K.-L. Lin, J. Electron. Mater. 32, 1426 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Swenson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swenson, D. The effects of suppressed beta tin nucleation on the microstructural evolution of lead-free solder joints. J Mater Sci: Mater Electron 18, 39–54 (2007). https://doi.org/10.1007/s10854-006-9012-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9012-8

Keywords

  • Solder Joint
  • Liquidus Projection
  • Metastable Phase Diagram
  • Ag3Sn Plate
  • Structural Refinement Effect