Abstract
Most lead-free solders comprise tin (Sn) as the majority component, and nominally pure β-Sn is the majority phase in the microstructure of these solders. It is well established that nucleation of β-Sn from Sn-base liquid alloys is generally difficult. Delays in the onset of β-Sn formation have a profound effect upon the microstructural development of solidified Sn-base alloys. Utilizing stable and metastable phase diagrams, along with solidification principles, the effects of inhibited β-Sn nucleation on microstructural development are discussed, employing the widely studied Sn–Ag–Cu (SAC) alloy as a model system. This analysis shows that the main effect of suppressed β-Sn nucleation on near-eutectic SAC solders is to increase the number and/or volume fraction of primary or primary-like microconstituents, while simultaneously decreasing the volume fraction of eutectic microconstituent. General strategies are outlined for avoiding unwanted microconstituent development in these materials, including the use of metastable phase diagrams for selecting alloy compositions, employment of inoculants to promote β-Sn nucleation, and utilization of high cooling rates to limit solid phase growth. Finally, areas for future research on the development of inoculated Sn-base solder alloys are outlined.
This is a preview of subscription content, access via your institution.












References
C.J. Evans, Metallurgia 51, 11 (1984)
C.M. Miller, I.E. Anderson, J.F. Smith, J. Electron. Mater. 23, 595 (1994)
J. Bath, C. Handwerker and E. Bradley, Circuits Assembly (May 2000) 31.
D. Suraski, K. Seeling, IEEE Trans. Electron. Packag. Manuf. 24, 244 (2001)
I.E. Anderson, J.C. Foley, B.A. Cook, J.L. Harringa, R.L.Terpstra, O. Unal, J. Electron. Mater. 30, 1050 (2001)
T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park OH, 1990)
A. Ohno, T. Motegi, J. Japan Inst. Metals 37, 777 (1973)
K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)
S.K. Kang, W.K. Choi, D.-Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K.J. Puttlitz, Proc. 53rd ECTC Conf. (IEEE, Piscataway, NJ, 2003), p. 64
B. Vonnegut, J. Colloid. Sci. 3, 563 (1948)
G.M. Pound, V.K. LA Mer, J. Amer. Chem. Soc. 74, 2323(1952)
M. Volmer, A. Weber, Z. Phys. Chem. 119, 227 (1926)
R. Becker, W. Döring, Ann. Phys. 24, 719 (1935)
D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)
J.H. Holloman, D. Turnbull, Progress Metal Phys. 4, 333 (1953)
J.H. Perepezko, Mater. Sci. Eng. 65, 125 (1984)
K.F. Kelton, in Solid State Physics, vol. 45, ed. by F. Seitz, D. Turnbull (1991), p. 75.
O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th edn. (Pergamon Press, Oxford UK 1979)
D. Turnbull, J. Appl. Phys. 21, 1022 (1950)
D. Lewis, S. Allen, M. Notis, A. Scotch, J. Electron. Mater. 31, 161 (2002)
D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.-K. Choi, D.-Y. Shi, C. Goldsmith, K.J. Puttlitz, J. Mater. Res. 17, 2775 (2002)
K.L. Buckmaster, J.J. Dziedzic, M.A. Masters, B.D. Poquette, G.W. Tormoen, D. Swenson, D.W. Henderson, T. Gosselin, S.K. Kang, D.Y. Shih and K.J. Puttlitz, Presented at the TMS 2003 Fall Meeting, Chicago, IL, November 2003.
A. LaLonde, D. Emelander, J. Jeannette, C. Larson, W. Rietz, D. Swenson, D.W. Henderson, J. Electron. Mater. 33, 1545 (2004)
L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, E.J. Cotts, J. Electron. Mater. 33, 1429 (2004)
D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, S.K. Kang, P. Lauro, D.-Y. Shih, C. Goldsmith, K.J. Puttlitz, J. Mater. Res. 19, 1608 (2004)
M.E. Loomans, M.E. Fine, Metall. Mater. Trans. A 31A, 155 (2000)
F.R. Mollard, M.C. Flemings, TMS AIME 239, 1526 (1967)
D.G. Mccartney, J.D. Hunt R.M. Jordan, Metall. Trans. 11A (1980)
T. Himemiya, T. Umeda, Mater. Trans. JIM 40, 665 (1999)
J.D. Hunt, K.A. Jackson, Trans. TMS AIME 236, 843 (1966)
W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, Acta Metall. 1, 428 (1953)
A. Rosenberg, W.G. Winegard, Acta Metall. 2, 342 (1954)
K.S. Kim, S.H. Huh, K. Suganuma, Mater. Sci. Engin. A A333, 106 (2002)
Telang A.U., Bieler T.R., Choi S., Subramanian K.N. (2002) J. Mater. Res. 17: 2294
A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.P. Lehman Y. Xing, E.J. Cotts, J. Electron. Mater. 33, 1412 (2004)
E.O. Hall, Twinning and Diffusionless Transformations in Metals. (Buttersworth Scientific Publications, London, UK, 1954)
E. Teghtsoonian, B. Chalmers, Can. J. Phys. 30, 388 (1952)
J.W. Christian, The Theory of Transformations in Metals and Alloys. (Pergamon Press, Oxford UK, 1965)
F.A. Crossley, L.F. Mondolfo, Trans. TMS AIME 191, 1143 (1951)
M. McCormack, S. Jin, G.W. Kammlott, H.S. Chen, Appl. Phys. Lett. 63, 15 (1993)
M. McCormack, S. Jin, J. Electron. Mater. 23, 635 (1994)
S.K. Kang, D.-Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.-I. Cho, J. Yu, W.K. Choi, J. Metals 56, 34 (2004)
I.E. Anderson, B.A. Cook, J. Harringa, R.L. Terpstra, J. Electron. Mater. 31, 1166 (2002)
Z.G. Chen, Y.W. Shi, Z.D. Xia, Y.F. Yan, J. Electron. Mater. 31, 1122 (2002)
P. Harris, Surface Mount Tech. (U.K.), 11 (1999) 46.
J.S. Kirkaldy, D.J. Young, Diffusion in the Condensed State. (Inst. Of Metals, London UK, 1985)
K.-L. Lin, H.-M. Hsu, J. Electron. Mater. 30, 1068 (2001)
C. Wagner, J. Electrochem. Soc. 103, 571 (1956)
C.-M. Chuang, K.-L. Lin, J. Electron. Mater. 32, 1426 (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Swenson, D. The effects of suppressed beta tin nucleation on the microstructural evolution of lead-free solder joints. J Mater Sci: Mater Electron 18, 39–54 (2007). https://doi.org/10.1007/s10854-006-9012-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-006-9012-8
Keywords
- Solder Joint
- Liquidus Projection
- Metastable Phase Diagram
- Ag3Sn Plate
- Structural Refinement Effect