Skip to main content
Log in

Anisotropic behaviors in polycrystalline Cd-doped GaSe thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

GaSe thin films were deposited by thermal evaporation technique with Cd doping. X-ray diffraction analysis showed that Cd-doped films have polycrystalline structure with the preferred orientation along (008) direction. Temperature dependent electrical conductivity measurements were carried out in the temperature range of 100–400 K along perpendicular and parallel directions to the growth direction for the films exhibiting p-type conduction determined by hot probe technique. The room temperature conductivity values of the films were found to be as 1.5 × 10−8 and 4.9 × 10−12 (Ω cm)−1 due to the measurements along both perpendicular and parallel directions, respectively. The difference in the conductivity values is the indication of electrical anisotropy in the samples. Carrier conduction in the films was provided by the thermionic emission in the high temperature region (310–400 K) with almost the same activation energies in both directions. Space charge limited current analysis at different temperatures reveals the existence of two discrete sets of trap levels for both perpendicular and parallel directions. Calculated trap levels and trap concentrations are 99 meV, 3.5 × 1012 cm−3 and 418 meV, 2.2 × 105 cm−3 for perpendicular direction, 58 meV, 2.1 × 1018 cm−3 and 486 meV, 1.4 × 1012  cm−3 for parallel direction. The differences in the values of the trap levels and concentrations for both directions confirm the existence of electrical anisotropy in Cd-doped GaSe thin films, because of the structural anisotropy between and inside the crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Khun, A. Chevy, R. Chevalier, Phys. Status Solid A 31, 469 (1975)

    Google Scholar 

  2. J.V. McCanny, R.B. Murray, J. Phys. C 10, 1211 (1997)

    Article  Google Scholar 

  3. F. Jellinek, H. Hahn, Z. Naturforsch. 16, 713 (1961)

    Google Scholar 

  4. W. Schubert, E. Dörre, M. Kluge, Z. Metalik. 46, 216 (1955)

    CAS  Google Scholar 

  5. A. Khun, R. Chevalier, A. Rimsky, Acta Crystallogr. 31, 2841 (1975)

    Article  Google Scholar 

  6. S.H. Lee, Y.K. Hsu, H.C. Hsu, C.S. Chang, W.F. Hsieh, Jpn. J. Appl. Phys. 42, 5217 (2003)

    Article  CAS  Google Scholar 

  7. M. Parlak, A.F. Qasrawi, Ç. Erçelebi, J. Mater. Sci. 38, 1507 (2003)

    Article  CAS  Google Scholar 

  8. G.B. Abdullayev, N.B. Zaletayev, A.Z. Zamedova, T.V. Rudovol, V.I. Stafayev, Radio Eng. Electron. Phys. 24, 129 (1979)

    Google Scholar 

  9. M. Di Giulio, G. Micocci, P. Siciliano, A. Tepore, J. Appl. Phys. 62, 4231 (1987)

    Article  Google Scholar 

  10. B.M. Başol, Thin Solid Films 361–362, 514 (2000)

    Google Scholar 

  11. M. Budiman, T. Okamoto, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 37, 5497 (1998)

    Article  CAS  Google Scholar 

  12. A.O. Kodolbaş, G.M. Mamedov, Mater. Sci Eng B 110, 52 (2004)

    Article  CAS  Google Scholar 

  13. A. Seyhan, O. Karabulut, B.G. Akinoğlu, B. Aslan, R. Turan, Cryst. Res. Technol. 40, 893 (2005)

    Article  CAS  Google Scholar 

  14. K.R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay e, A.A. Kaya, A. Kulibekov (Gulubayov), A. Seilmeier, E. Yu salaev, Opt. Commun. 261, 60 (2006)

  15. T. Çolakoğlu, M. Parlak, Thin Solid Films 492, 52 (2005)

    Article  CAS  Google Scholar 

  16. Powder Diffraction File, Joint Committee on Powder Diffraction Standards (ASTM, Philadelphia, PA, 2000) Card 29–628

  17. M.B. Thomas, Thin Solid Films 8, 273 (1971)

    Article  CAS  Google Scholar 

  18. L.L. Kazmerski, Polycrystalline and Amorphous Thin Films and Devices (London, Academic Press, 1980) p. 84

    Google Scholar 

  19. J.Y. Seto, J. Appl. Phys. 46(12), 5247 (1975)

    Article  CAS  Google Scholar 

  20. N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials (Oxford, Clarendon Press, 1979) p. 41

    Google Scholar 

  21. A. Rose, Phys. Rev. 97, 1538 (1955)

    Article  CAS  Google Scholar 

  22. M.A. Lampert, Phys. Rev. 103, 1648 (1995)

    Article  Google Scholar 

  23. Y. Kim, S. Ohmi, K. Tsutsui, H. Iwai, Jpn. J. Appl. Phys. 44, 4032 (2005)

    Article  CAS  Google Scholar 

  24. M. Thamilselvan, K. Premnazeer, D. Mangalaraj, Sa.K. Narayandas, Physica B 337, 404 (2003)

    Article  CAS  Google Scholar 

  25. C. Manfredotti, A. Rizzo, C. De Blasi, S. Galassini, L. Ruggiero, J. Appl. Phys. 46, 10 (1975)

    Article  Google Scholar 

  26. M.V. Garcia-cuenca, J.L. Morenza, J. Estevez, J. Appl. Phys. 6, 56 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Parlak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çolakoğlu, T., Parlak, M. Anisotropic behaviors in polycrystalline Cd-doped GaSe thin films. J Mater Sci: Mater Electron 17, 1017–1024 (2006). https://doi.org/10.1007/s10854-006-9003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9003-9

Keywords

Navigation