Skip to main content
Log in

Microstructural and dielectric properties of donor doped (La3+) CaCu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of La3+ doping on Ca2+ sites in CaCu3Ti4O12 (CCTO) was examined. Polycrystalline samples in the chemical formula Ca(1-x)La(2/3)x Cu3Ti4O12 with x = 0, 0.5, 1 were synthesized via the conventional solid state reaction route. X-ray powder diffraction analysis confirmed the formation of the monophasic compounds and indicated the structure to be remaining cubic with a small increase in lattice parameter with increase in La3+ doping. The dielectric and impedance characteristics of Ca(1-x)La(2/3)x Cu3Ti4O12 were studied in the 100 Hz–10 MHz frequency range at various temperatures (100–475 K). A remarkable decrease in grain size from 50 μm to 3–5 μm was observed on La3+ substitution. The dielectric constant of CaCu3Ti4O12 decreased drastically on La3+ doping. The frequency and temperature responses of dielectric constant of La3+ doped samples were found to be similar to that of CaCu3Ti4O12. The effects of La3+ doping on the electrical properties of CaCu3Ti4O12 were probed using impedance spectroscopy. The conducting properties of grain decreased while that of the grain boundary increased on La3+ doping, resulting in a decrease of the internal barrier layer effect. A decrease in grain boundary capacitance and stable grain response in La3+ doped CCTO ceramics were unambiguously established by modulus spectra studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  CAS  Google Scholar 

  2. B.-G. Kim, S.M. Cho, T.-Y. Kim, H.M. Jang, Phys. Rev. Lett. 86, 3404 (2001)

    Article  CAS  Google Scholar 

  3. J. Wu, C.-W. Nan, Y. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002)

    Article  CAS  Google Scholar 

  4. S. Garcia-Martin, A. Morata-Orrantia, M.H. Aguirre, M.A. Alario-Franco, Appl. Phys. Lett. 86, 43110 (2005)

    Article  CAS  Google Scholar 

  5. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)

    Article  CAS  Google Scholar 

  6. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  CAS  Google Scholar 

  7. M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

    Article  CAS  Google Scholar 

  8. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  CAS  Google Scholar 

  9. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  CAS  Google Scholar 

  10. M.H. Cohen, J.B. Neaton, L. He, D. Vanderbilt, J. Appl. Phys. 94(1), 3299

  11. G. Chiodelli, V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Lupotto, Solid State Commun. 132, 241 (2004)

    Article  CAS  Google Scholar 

  12. T.-T. Fang, H.-K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)

    Article  CAS  Google Scholar 

  13. Z.-J.T. Lei Zhang, Phys. Rev. B 70, 174306 (2004)

    Article  CAS  Google Scholar 

  14. G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, J. Phys. D Appl. Phys 38, 1824 (2005)

    Article  CAS  Google Scholar 

  15. J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li, J.F. Wang, Appl. Phys. Lett. 87, 142901 (2005)

    Article  CAS  Google Scholar 

  16. L. Zhang, Appl. Phys. Lett. 87, 022907 (2005)

    Article  CAS  Google Scholar 

  17. E.A. Patterson, S. Kwon, C.-C. Huang, D.P. Cann, Appl. Phys. Lett. 87, 182911 (2005)

    Article  CAS  Google Scholar 

  18. L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, J. Tafto, Phys. Rev. B 71, 14118 (2005)

    Article  CAS  Google Scholar 

  19. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am Ceram. Soc. 84, 531 (2001)

    CAS  Google Scholar 

  20. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84, 474 (2001)

    Article  CAS  Google Scholar 

  21. A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, J. Eur. Ceram. Soc. 24, 1439 (2004)

    Article  CAS  Google Scholar 

  22. J. Liu, C.-G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 93703 (2005)

    Article  CAS  Google Scholar 

  23. B.A. Bender, M.-J. Pan, Mater. Sci. Eng. B 117, 339 (2005)

    Article  CAS  Google Scholar 

  24. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  CAS  Google Scholar 

  25. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  CAS  Google Scholar 

  26. J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)

    Article  CAS  Google Scholar 

  27. V. Hippel, Dielectrics and Waves (Wiley, New York, 1954)

    Google Scholar 

Download references

Acknowledgment

The authors thank the Department of Science and Technology (DST), Government of India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Shri Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shri Prakash, B., Varma, K.B.R. Microstructural and dielectric properties of donor doped (La3+) CaCu3Ti4O12 ceramics. J Mater Sci: Mater Electron 17, 899–907 (2006). https://doi.org/10.1007/s10854-006-0037-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-0037-9

Keywords

Navigation