Skip to main content
Log in

Structural, microstructural and dielectric studies of tin-doped barium niobate perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Monophasic oxides of the type Ba(Nb1-x Sn x ) O3 (0  ≤  x  ≤  1) have been synthesized by solid-state reaction method. All these compounds are found to have tetragonal structure except x = 1. The cell parameters and their variation with composition x have been determined. The X-ray density is found to increase gradually with increase of dopant concentration. Tolerance factor and volume of unit cell was found to be almost constant for all the compositions. Scanning electron microscopy showed the presence of grains of approximately 1 μm in size. Dielectric measurements in the frequency range 100 Hz to 1 MHz and in the temperature range from  − 100°C to 500°C has been carried out to determine the dielectric parameters. A strong frequency dependence of both dielectric constant (ɛ′) and dielectric loss (D) is observed in the frequency range 100 Hz to 100 kHz. At low frequency, the piling up of mobile charge carriers at the grain boundary produces interfacial polarization giving rise to high dielectric constant. Dielectric loss showed a typical behaviour in the temperature and frequency range studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.A. Smolensky, A.I. Agranovskaya, Sov. Phys. Sol. State 1, 1429 (1959)

    Google Scholar 

  2. L.E. Cross, Ferroelectrics 76, 241 (1987)

    CAS  Google Scholar 

  3. B.Y. Ahn, N.-K. Kim, J. Mater. Sci. 37, 4697 (2002)

    Article  CAS  Google Scholar 

  4. K.-M. Lee, H.M. Jang, J. Am. Ceram. Soc. 81(10), 2586 (1998)

    Article  CAS  Google Scholar 

  5. S.K. Sinha, R.N.P. Choudhary, S.N. Choudhary, Ind. J. Pure Appl. Phys. 38, 783 (2000)

    CAS  Google Scholar 

  6. R.R. Vedantam, V. Subramanian, V. Sivasubramanian, V.R.K. Murthy, Jpn. J. Appl. Phys. 42, 7392 (2003)

    Article  CAS  Google Scholar 

  7. R. Farhi, M. El Marssi, A. Simon, J. Ravez, Euro. Phys. J. B. 9, 599 (1999)

    Article  CAS  Google Scholar 

  8. T. Takashi, J. Appl. Phys. 39, 5637 (2000)

    Google Scholar 

  9. I.M. Reaney, E.L. Colla, N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994)

    Article  CAS  Google Scholar 

  10. A. Simon, J. Ravez, M. Maglione, J. Phys. Cond. Mater. 16, 963 (2004)

    Article  CAS  Google Scholar 

  11. D. Hennings, A. Schnell, G. Simon, J. Am. Ceram. Soc. 65, 539 (1982)

    Article  CAS  Google Scholar 

  12. J. Ravez, A. Simon, J. Korean Phys. Soc. 32(S955), 11 (1998)

    Google Scholar 

  13. L. Bellaiche, J. Padilla, D. Vanderbilt, Phys. Rev. B 59(3), 1834 (1998)

    Article  Google Scholar 

  14. O. Parkash, D. Kumar, K.K. Srivastava, R.K. Dwivedi, J. Mater. Sci. Lett. 36, 5805 (2001)

    CAS  Google Scholar 

  15. P. Singh, O. Parkash, D. Kumar, J. Mater. Sci.: Mater. Electron. 16, 145 (2005)

    Article  CAS  Google Scholar 

  16. B. Jaffe, J.W.R. Cook, H. Jaffe, in Piezoelectric Ceramics (Academic Press, New York, 1971)

  17. R. Buchannan, in Ceramic materials for Electronic Applications (Marcel Dekker, New York, 1986)

  18. U. Lampe, J. Gerblinger, H. Meixner, Sensors and Acoustics B, Chem. 26/27, 97 (1995)

    Article  Google Scholar 

  19. G.M. Chitgopikar, R.L Raibagkar, in Proceedings of the National Conference on Emerging Materials and Technologies, August 2004, Department of Physics, SV University, Tirupati, India, ed. by P.N. Reddy, p. 188

  20. V.M. Goldschmidt, Geochemische Verteilungsgesetze der Elements, I-IX, Skrift, Norske, Vid. Akad, Oslo.I.Mat-Nature kl

  21. J. Kuwata, K. Uchino, S. Nomura, Ferrroelectrics 22, 863 (1979)

    CAS  Google Scholar 

  22. S. Senbhagaraman, Materials Research Centre, IISC, Bangalore, India

  23. R.D. Shannon, Acta. Crystallogr. Sec. A 32, 751 (1976)

    Article  Google Scholar 

  24. H.D. Megraw, Proc. Phys. Soc. Lond. 58, 133 (1946)

    Article  Google Scholar 

  25. S. Katayama, I. Yoshinga, N. Yamada, T. Nagi, J. Am. Ceram. Soc. 79(8), 2059 (1996)

    Article  CAS  Google Scholar 

  26. S. Upadhay, O. Parkash, D. Kumar, J. Mater. Sci.: Mater. Electron. 12, 165 (2001)

    Article  Google Scholar 

  27. M. Pollak, T.H. Gebbale, Bull. Mater. Sci. 2, 325 (1961)

    Google Scholar 

  28. A.K. Jonscher, in Dielectric Relaxation of Solids (Chelsea Dielectric Press, London, 1983)

  29. R. Gerhardt, J. Phys. Chem. Solids 55 1491 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (GCM) would like to thank University Grants Commission, New Delhi, India, for sanction of minor research project and award of teacher fellowship. Authors are thankful to the Department of Physics, Gulbarga University, Gulbarga, India and Banaras Hindu University, Varanasi, India, for extending dielectric measurement facility. The authors are also grateful to the staff members of Department of Applied Electronics and Department of Materials Science for their kind encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra L. Raibagkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitgopikar, G., Chickpatil, M. & Raibagkar, R.L. Structural, microstructural and dielectric studies of tin-doped barium niobate perovskite. J Mater Sci: Mater Electron 17, 963–970 (2006). https://doi.org/10.1007/s10854-006-0035-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-0035-y

Keywords

Navigation