Skip to main content

Advertisement

Log in

In situ silver-doped antibacterial bioactive glass for bone regeneration application

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The outbreak of infectious diseases during bone fractures and surgery causes a serious problem in orthopedics. Thus, the discovery of safe and antibacterial bone regenerative material has received great interest in recent years. In the present study, silver is in situ doped in 70S30C bioactive glass (BG), and is employed as an antibacterial bone regenerative material. The rice husk, eggshell, and silver nitrate were used as a precursor of silica, calcium, and silver, respectively. The silver-doped 70S30C BG (AgBG) was prepared through the precipitation method without the addition of acid and binder. The AgBG was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy-energy dispersive spectroscopy (SEM–EDS), and Brunauer–Emmett–Teller (BET). Further, the in vitro bioactivity and biodegradation study was performed in a simulated body fluid (SBF). The antibacterial activity was checked against E. coli and S. aureus bacteria demonstrating 2.11, 2.12, and 2.4 cm zone of inhibition against E. coli and 2.0, 2.11, and 2.5 cm zone of inhibition against S. aureus for 1AgBG, 3AgBG, and 5AgBG. Further, the in vitro hemolysis study was conducted using human blood revealing the hemocompatibility of the AgBG samples. The ex ovo chorioallantoic membrane assay (CAM) was studied which resulted in good neovascularization. Further, the chick bone histology study showed the growth of the osteoblast cells. The in vitro and in vivo biocompatibility results revealed biocompatibility without any adverse effects. Interestingly, the AgBG samples demonstrated good bioactivity, antibacterial activity, angiogenesis, hemocompatibility, and biocompatibility properties that have potential applications for bone tissue engineering.

Graphical Abstract

Silver-doped bioactive glass synthesized from recycled biowaste materials demonstrates its potential application for bone regeneration

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data Availability Statement

The data will be made available from the corresponding author upon reasonable request.

References

  1. Elin B, Quentin M, Willliam W, Gristina AG (1989) In vitro and in vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopaedic implant materials. Biomaterials 10:325–328. https://doi.org/10.1016/0142-9612(89)90073-2

    Article  Google Scholar 

  2. Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem-Int Edition 52:1636–1653. https://doi.org/10.1002/anie.201205923

    Article  CAS  Google Scholar 

  3. Morrison L, Zembower TR (2020) Antimicrobial resistance global report on surveillance. Gastrointest Endosc Clin N Am 30:619–635. https://doi.org/10.1016/j.giec.2020.06.004

    Article  PubMed  Google Scholar 

  4. Iravani S, Varma RS (2019) Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem 21:4839–4867. https://doi.org/10.1039/c9gc02391g

    Article  CAS  Google Scholar 

  5. Sánchez-Salcedo S, García A, González-Jiménez A, Vallet-Regí M (2022) Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater 155:654–666. https://doi.org/10.1016/j.actbio.2022.10.045

    Article  CAS  PubMed  Google Scholar 

  6. Ciraldo FE, Liverani L, Gritsch L et al (2018) Synthesis and characterization of silver-doped mesoporous bioactive glass and its applications in conjunction with electrospinning. Materials 11:692. https://doi.org/10.3390/ma11050692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sehgal RR, Carvalho E, Banerjee R (2016) Mechanically stiff, zinc cross-linked nanocomposite scaffolds with improved osteostimulation and antibacterial properties. ACS Appl Mater Interfaces 8:13735–13747. https://doi.org/10.1021/acsami.6b02740

    Article  CAS  PubMed  Google Scholar 

  8. Caliari MV, Augusto M, Sá D et al (2018) Evaluation of in vitro and in vivo biocompatibility and structure of cobalt-releasing sol-gel bioactive glass. Ceram Int 44:20337–20347. https://doi.org/10.1016/j.ceramint.2018.08.022

    Article  CAS  Google Scholar 

  9. Iqbal N, Kadir MRA, Mahmood NH et al (2014) Characterization, antibacterial and in vitro compatibility of zinc-silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int 40:4507–4513. https://doi.org/10.1016/j.ceramint.2013.08.125

    Article  CAS  Google Scholar 

  10. Pajares-Chamorro N, Wagley Y, Maduka CV et al (2021) Silver-doped bioactive glass particles for in vivo bone tissue regeneration and enhanced methicillin-resistant Staphylococcus aureus (MRSA) inhibition. Mater Sci Eng, C 120:111693. https://doi.org/10.1016/j.msec.2020.111693

    Article  CAS  Google Scholar 

  11. Sergi R, Bellucci D, Cannillo V (2020) A review of bioactive glass/natural polymer composites: state of the art. Materials 13:5560. https://doi.org/10.3390/ma13235560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Adam SNFS, Osman AF, Shamsudin R (2018) Tensile properties, biodegradability and bioactivity of thermoplastic starch (TPS)/ bioglass composites for bone tissue engineering. Sains Malaysiana 47:1303–1310. https://doi.org/10.17576/jsm-2018-4706-27

  13. Nikolova MP, Chavali MS (2019) Recent advances in biomaterials for 3D scaffolds: a review. Bioactive Mater 4:271–292. https://doi.org/10.1016/j.bioactmat.2019.10.005

    Article  Google Scholar 

  14. Hench LL (2015) The future of bioactive ceramics. J Mater Sci Mater Med 26:3–6. https://doi.org/10.1007/s10856-015-5425-3

    Article  CAS  Google Scholar 

  15. Rau JV, Curcio M, Raucci MG et al (2019) Cu-releasing bioactive glass coatings and their in vitro properties. ACS Appl Mater Interfaces 11:5812–5820. https://doi.org/10.1021/acsami.8b19082

    Article  CAS  PubMed  Google Scholar 

  16. Zhu N, Chatzistavrou X, Papagerakis P et al (2019) Silver-doped bioactive glass/chitosan hydrogel with potential application in dental pulp repair. ACS Biomater Sci Eng 5:4624–4633. https://doi.org/10.1021/acsbiomaterials.9b00811

    Article  CAS  PubMed  Google Scholar 

  17. Hoppe A, Boccaccini AR (2015) Biological impact of bioactive glasses and their dissolution products. Front Oral Biol 17:22–32. https://doi.org/10.1159/000381690

    Article  PubMed  Google Scholar 

  18. Awaid M, Cacciotti I (2022) Bioactive glasses with antibacterial properties: Mechanisms, compositions, and applications. Bioactive Glasses Glass-Ceram Fundam Appl, pp 581–614. https://doi.org/10.1002/9781119724193.ch23

  19. Gupta N, Santhiya D, Murugavel S et al (2018) Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass. Colloids Surf A 538:393–403. https://doi.org/10.1016/j.colsurfa.2017.11.023

    Article  CAS  Google Scholar 

  20. Qin X, Cao R, Zheng J et al (2020) A new strategy for synthesizing silver doped mesoporous bioactive glass fibers and their bioactivity, antibacterial activity and drug loading performance. RSC Adv 10:44835–44840. https://doi.org/10.1039/d0ra08656h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shuai C, Xu Y, Feng P et al (2019) Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver. Chem Eng J 374:304–315. https://doi.org/10.1016/j.cej.2019.03.273

    Article  Google Scholar 

  22. Akhtach S, Tabia Z, Bricha M, El Mabrouk K (2021) Structural characterization, in vitro bioactivity, and antibacterial evaluation of low silver-doped bioactive glasses. Ceram Int 47:29036–29046. https://doi.org/10.1016/j.ceramint.2021.07.066

    Article  CAS  Google Scholar 

  23. Souza L, Lopes JH, Encarnação D et al (2018) Comprehensive in vitro and in vivo studies of novel melt-derived Nb-substituted 45S5 bioglass reveal its enhanced bioactive properties for bone healing. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-31114-0

    Article  CAS  Google Scholar 

  24. Faqhiri H, Hannula M, Kellomäki M et al (2019) Effect of melt-derived bioactive glass particles on the properties of chitosan scaffolds. J Funct Biomater 10:1–15. https://doi.org/10.3390/jfb10030038

    Article  CAS  Google Scholar 

  25. Holzwarth U, Gibson N (2011) The Scherrer equation versus the “Debye-Scherrer equation.” Nat Nanotechnol 6:534. https://doi.org/10.1038/nnano.2011.145

    Article  CAS  PubMed  Google Scholar 

  26. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  27. Kumar P, Kumar V, Kumar R et al (2020) Fabrication and characterization of ZrO2 incorporated SiO2–CaO–P2O5 bioactive glass scaffolds. J Mech Behav Biomed Mater 109:103854. https://doi.org/10.1016/j.jmbbm.2020.103854

    Article  CAS  PubMed  Google Scholar 

  28. Ryan EJ, Ryan AJ, González-Vázquez A et al (2019) Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials 197:405–416. https://doi.org/10.1016/j.biomaterials.2019.01.031

    Article  CAS  PubMed  Google Scholar 

  29. Mitra I, Mukherjee S, Reddy Venkata PB et al (2016) Benzimidazole based Pt(II) complexes with better normal cell viability than cisplatin: Synthesis, substitution behavior, cytotoxicity, DNA binding and DFT study. RSC Adv 6:76600–76613. https://doi.org/10.1039/c6ra17788c

    Article  CAS  Google Scholar 

  30. Mesquita-guimarães J, Ramos L, Detsch R et al (2019) Evaluation of in vitro properties of 3D micro-macro porous zirconia scaffolds coated with 58S bioactive glass using MG-63 osteoblast-like cells. J Eur Ceram Soc 39:2545–2558. https://doi.org/10.1016/j.jeurceramsoc.2019.01.029

    Article  CAS  Google Scholar 

  31. Mariappan CR, Ranga N (2017) Influence of silver on the structure, dielectric and antibacterial effect of silver doped bioglass-ceramic nanoparticles. Ceram Int 43:2196–2201. https://doi.org/10.1016/j.ceramint.2016.11.003

    Article  CAS  Google Scholar 

  32. Abodunrin OD, El Mabrouk K, Bricha M (2023) A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. J Mater Chem B 11:955–973. https://doi.org/10.1039/d2tb02505a

    Article  CAS  PubMed  Google Scholar 

  33. Khalil M, Abbas V, Kayani ZN, Tariq U (2020) Optik E ff ect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optik 200:163428. https://doi.org/10.1016/j.ijleo.2019.163428

    Article  CAS  Google Scholar 

  34. Cacciotti I (2017) Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J Mater Sci 52:8812–8831. https://doi.org/10.1007/s10853-017-1010-0

    Article  CAS  Google Scholar 

  35. Wetzel R, Blochberger M, Scheffler F et al (2020) Mg or Zn for Ca substitution improves the sintering of bioglass 45S5. Sci Rep 10:15964. https://doi.org/10.1038/s41598-020-72091-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar P, Dehiya BS, Sindhu A et al (2020) Fabrication and characterization of silver nanorods incorporated calcium silicate scaffold using polymeric sponge replica technique. Mater Des 195:109026. https://doi.org/10.1016/j.matdes.2020.109026

    Article  CAS  Google Scholar 

  37. El-Rashidy AA, Waly G, Gad A et al (2018) Preparation and in vitro characterization of silver-doped bioactive glass nanoparticles fabricated using a sol-gel process and modified Stöber method. J Non-Cryst Solids 483:26–36. https://doi.org/10.1016/j.jnoncrysol.2017.12.044

    Article  CAS  Google Scholar 

  38. Palakurthy S, Azeem A, Venugopal Reddy K (2019) In vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications. Ceram Int 45:25044–25051. https://doi.org/10.1016/j.ceramint.2019.03.169

    Article  CAS  Google Scholar 

  39. El-Kady AM, Ali AF, Rizk RA, Ahmed MM (2012) Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram Int 38:177–188. https://doi.org/10.1016/j.ceramint.2011.05.158

    Article  CAS  Google Scholar 

  40. Samudrala R, Abdul Azeem P, Penugurti V, Manavathi B (2017) Cytocompatibility studies of titania-doped calcium borosilicate bioactive glasses in-vitro. Mater Sci Eng C 77:772–779. https://doi.org/10.1016/j.msec.2017.03.245

    Article  CAS  Google Scholar 

  41. Shendage SS, Gaikwad K, Kachare K et al (2024) In vitro and in vivo study of copper-doped bioactive glass for bone regeneration application. Mater Chem Phys 313:128789. https://doi.org/10.1016/j.matchemphys.2023.128789

    Article  CAS  Google Scholar 

  42. Cacciotti I (2019) Multisubstituted hydroxyapatite powders and coatings: the influence of the codoping on the hydroxyapatite performances. Int J Appl Ceram Technol 16:1864–1884. https://doi.org/10.1111/ijac.13229

    Article  CAS  Google Scholar 

  43. Naseri S, Lepry WC, Maisuria VB et al (2019) Development and characterization of silver-doped sol-gel-derived borate glasses with anti-bacterial activity. J Non-Cryst Solids 505:438–446. https://doi.org/10.1016/j.jnoncrysol.2018.11.026

    Article  CAS  Google Scholar 

  44. Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179. https://doi.org/10.1016/j.biomaterials.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  45. Luo G, Ma Y, Cui X et al (2017) 13–93 bioactive glass/alginate composite scaffolds 3D printed under mild conditions for bone regeneration. RSC Adv 7:11880–11889. https://doi.org/10.1039/c6ra27669e

    Article  CAS  Google Scholar 

  46. Li HC, Wang DG, Chen CZ (2015) Effect of zinc oxide and zirconia on structure, degradability and in vitro bioactivity of wollastonite. Ceram Int 41:10160–10169. https://doi.org/10.1016/j.ceramint.2015.04.117

    Article  CAS  Google Scholar 

  47. Zamani D, Moztarzadeh F, Bizari D (2019) Alginate-bioactive glass containing Zn and Mg composite scaffolds for bone tissue engineering. Int J Biol Macromol 137:1256–1267. https://doi.org/10.1016/j.ijbiomac.2019.06.182

    Article  CAS  PubMed  Google Scholar 

  48. Ji L, Wang W, Jin D et al (2015) In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Mater Sci Eng C 46:1–9. https://doi.org/10.1016/j.msec.2014.09.041

    Article  CAS  Google Scholar 

  49. El-Rashidy AA, Waly G, Gad A et al (2018) Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass. Biomed Mater 13:065006. https://doi.org/10.1088/1748-605X/aad8cf

    Article  PubMed  Google Scholar 

  50. Li HC, Wang DG, Chen CZ et al (2016) Influence of different amount of Na2O additive on the structure, mechanical properties and degradability of bioactive wollastonite. Ceram Int 42:1439–1445. https://doi.org/10.1016/j.ceramint.2015.09.088

    Article  CAS  Google Scholar 

  51. Shendage SS, Ingole VH, Rasal A et al (2024) Sustainable development of a bioactive material from recycled rice husk and eggshell for bone regeneration application. ACS Sustain Chem Eng 12:2598–2610. https://doi.org/10.1021/acssuschemeng.3c06290

    Article  CAS  Google Scholar 

  52. Nawaz A, Bano S, Yasir M et al (2020) Ag and Mn-doped mesoporous bioactive glass nanoparticles incorporated into the chitosan/gelatin coatings deposited on PEEK/bioactive glass layers for favorable osteogenic differentiation and antibacterial activity. Mater Adv 1:1273–1284. https://doi.org/10.1039/d0ma00325e

    Article  CAS  Google Scholar 

  53. Heras C, Jiménez-holguín J, Doadrio AL et al (2020) Multifunctional antibiotic- and zinc-containing mesoporous bioactive glass scaffolds to fight bone infection. Acta Biomater 114:395–406. https://doi.org/10.1016/j.actbio.2020.07.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang X, Liu Z, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. https://doi.org/10.3390/ijms17091534

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pajares-chamorro N, Shook J, Hammer ND, Chatzistavrou X (2019) Resurrection of antibiotics that methicillin-resistant Staphylococcus aureus resists by silver-doped bioactive glass-ceramic microparticles. Acta Biomater 96:537–546. https://doi.org/10.1016/j.actbio.2019.07.012

    Article  CAS  PubMed  Google Scholar 

  56. Naresh P, Narsimlu N, Srinivas C et al (2020) Ag2O doped bioactive glasses: an investigation on the antibacterial, optical, structural and impedance studies. J Non-Cryst Solids 549:120361. https://doi.org/10.1016/j.jnoncrysol.2020.120361

    Article  CAS  Google Scholar 

  57. Gurunathan S, Lee K, Kalishwaralal K et al (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350. https://doi.org/10.1016/j.biomaterials.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  58. Fayaz AM, Balaji K, Girilal M et al (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109. https://doi.org/10.1016/j.nano.2009.04.006

    Article  CAS  Google Scholar 

  59. Vale AC, Pereira PR, Barbosa AM et al (2018) Optimization of silver-containing bioglass nanoparticles envisaging biomedical applications. Mater Sci Eng C 94:161–168. https://doi.org/10.1016/j.msec.2018.09.027

    Article  CAS  Google Scholar 

  60. Choudhary R, Kumar S, Bulygina I et al (2021) Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk. Mater Sci Eng C 118:111456. https://doi.org/10.1016/j.msec.2020.111456

    Article  CAS  Google Scholar 

  61. Wang H, Zhao B, Dong W et al (2020) A dual-targeted platform based on graphene for synergistic chemo- photothermal therapy against multidrug-resistant Gram-negative bacteria and their biofilms. Chem Eng J 393:124595. https://doi.org/10.1016/j.cej.2020.124595

    Article  CAS  Google Scholar 

  62. Das SK, Parandhaman T, Dey MD (2021) Biomolecule-assisted synthesis of biomimetic nanocomposite hydrogel for hemostatic and wound healing applications. Green Chem 23:629–669. https://doi.org/10.1039/d0gc03010d

    Article  CAS  Google Scholar 

  63. Mirza S, Zia I, Jolly R et al (2018) Synergistic combination ofnatural bioadhesive bael fruit gum and chitosan/nano-hydroxyapatite: a ternary bioactive nanohybrid for bone tissue engineering. Int J Biol Macromol 119:215–224. https://doi.org/10.1016/j.ijbiomac.2018.07.128

    Article  CAS  PubMed  Google Scholar 

  64. Zia I, Mirza S, Jolly R et al (2018) Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: a ternary nanocomposite for bone tissue engineering. Int J Biol Macromol 124:88–101. https://doi.org/10.1016/j.ijbiomac.2018.11.059

    Article  CAS  PubMed  Google Scholar 

  65. Chen D, Shen H, He Y et al (2015) Synergetic effects of hBMSCs and hPCs in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects. Mol Med Rep 11:1111–1119. https://doi.org/10.3892/mmr.2014.2883

    Article  CAS  PubMed  Google Scholar 

  66. Dashnyam K, Jin GZ, Kim JH et al (2017) Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials 116:145–157. https://doi.org/10.1016/j.biomaterials.2016.11.053

    Article  CAS  PubMed  Google Scholar 

  67. Kang K, Lim D, Choi I et al (2011) Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol Lett 205:227–234. https://doi.org/10.1016/j.toxlet.2011.05.1033

    Article  CAS  PubMed  Google Scholar 

  68. Merckx G, Tay H, Lo Monaco M et al (2020) Chorioallantoic membrane assay as model for angiogenesis in tissue engineering: focus on stem cells. Tissue Eng Part B Rev 26:519–539. https://doi.org/10.1089/ten.teb.2020.0048

    Article  CAS  PubMed  Google Scholar 

  69. Henry JP, Bordoni B (2023) Histology, osteoblasts. StatPearls, Treasure Island, pp 1–18

  70. Kashte S, Dhumal R, Chaudhary P et al (2021) Bone regeneration in critical-size calvarial defect using functional biocompatible osteoinductive herbal scaffolds and human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells. Mater Today Commun 26:102049. https://doi.org/10.1016/j.mtcomm.2021.102049

    Article  CAS  Google Scholar 

  71. Dreanca A, Muresan-Pop M, Taulescu M et al (2021) Bioactive glass-biopolymers-gold nanoparticle based composites for tissue engineering applications. Mater Sci Eng C 123:112006

    Article  CAS  Google Scholar 

  72. Zare Jalise S, Baheiraei N, Bagheri F (2018) The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: in vitro and in vivo characterization. Ceram Int 44:14217–14227. https://doi.org/10.1016/j.ceramint.2018.05.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author SSS is thankful to Mahatma Jyotiba Phule Research Fellowship (MJPRF), Nagpur, Government of Maharashtra for the fellowship (MJPRF-2021). We are thankful to Shivaji University, Kolhapur for providing funds under the project “Research Strengthening Scheme.” The authors are thankful to UGC-SAP and DST-FIST, DST-PURSE for financial support and instrument facilities at the Department of Chemistry, Shivaji University, Kolhapur. We are thankful to Shivaji University Group for Advanced Research “SUGAR” for the valuable discussion.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Shital S. Shendage involved in conceptualization, methodology, design experiment, investigation, data collection, and curation, and writing the original draft. Kajal Gaikwad involved in angiogenesis, antibacterial, hemolysis, and in vivo study. Kranti Kachare involved in synthesis, data curation, writing, and review. Shivaji Kashte involved in biological assays, guidelines for execution, data curation, writing, review, and editing. Jia-Yaw Chang involved in characterization, data curation, writing, review, and editing. Anil Vithal Ghule involved in conceptualization of the project, planning of the experiments, guidelines for execution of the project, following the investigation, methodology, data curation, interpretation, supervision, validation, drafting of the manuscript, review, editing, and finalizing the draft.

Corresponding author

Correspondence to Anil Vithal Ghule.

Ethics declarations

Conflict of interest

The authors declare that there is no personal or financial conflict of interest in the current paper.

Ethical approval statement

The required ethical approval for the animal experiments is taken (Approval No. 6/IAEC/2017).

Additional information

Handling Editor: Subha Narayan Rath.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 16902 KB)

Supplementary file2 (MP4 38729 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shendage, S.S., Gaikwad, K., Kachare, K. et al. In situ silver-doped antibacterial bioactive glass for bone regeneration application. J Mater Sci 59, 10744–10762 (2024). https://doi.org/10.1007/s10853-024-09805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09805-z

Navigation