Skip to main content
Log in

Investigating the influence of fabrication parameters, flax fibre reinforcement, and ageing on interlaminar shear strength in thermoplastic-bonded wood veneers

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study investigates the suitability of two thermoplastic polymers that are non-toxic and environmentally friendly, namely polylactic acid (PLA) and recycled maleic anhydride-grafted polypropylene (rMAPP), as potential alternatives to formaldehyde-based adhesives in plywood production. Two types of rotary cut wood veneers, beech and Douglas fir, are tested. The performance of interfaces is evaluated using interlaminar shear strength tests and compared to those obtained with a benchmark polyvinyl glue. This study examines the manufacturing process settings on interlaminar shear strength, as well as the influence of incorporating plant fibre reinforcement into the adhesive. It also evaluates the effects of accelerated ageing on the shear strength. The results indicate that manufacturing parameters tested within the specified range have a limited impact on shear strength. Both rMAPP and polyvinyl glue exhibit similar performance. This strong adhesion obtained with rMAPP is attributed to the formation of covalent bonds between the maleic anhydride (MA) and the hydroxyl groups within the amorphous constituents of the wood cell wall and to mechanical interlocking resulting from the polymer’s efficient penetration into the various wood pore structures, including cell lumens and lathe checks. The incorporation of flax fibres enhances interface performance under ambient conditions but has a negative effect in the case of hygro- and hydrothermal accelerated ageing. The results with PLA adhesive show more varied outcomes, with lower shear strength when manufactured via vacuum bagging technique. Furthermore, the performance of PLA adhesive does not meet plywood ageing standards due to its moisture sensitivity and susceptibility to hydrolysis degradation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Data and code availability

The datasets analysed during the current study will be made available upon reasonable request.

References

  1. ANSES; National Institute for Public Health and the Environment (2019) Substance evaluation conclusion as required by REACH Article 48 and evaluation report for FORMALDEHYDE (EC No 200-001-8 CAS No 50-00-0)

  2. Ferdosian F, Pan Z, Gao G, Zhao B (2017) Bio-based adhesives and evaluation for wood composites application. Polymers 9(12):70. https://doi.org/10.3390/polym9020070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mansouri N-EE, Pizzi A, Salvado J (2007) Lignin-based polycondensation resins for wood adhesives. J Appl Polym Sci 103(3):1690–1699. https://doi.org/10.1002/app.25098

    Article  CAS  Google Scholar 

  4. Gonçalves D, Bordado JM, Marques AC, Galhano dos Santos R (2021) Non-formaldehyde, bio-based adhesives for use in wood-based panel manufacturing industry—a review. Polymers 13(23):4086. https://doi.org/10.3390/polym13234086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ang AF, Ashaari Z, Lee SH et al (2019) Lignin-based copolymer adhesives for composite wood panels – A review. Int J Adhes Adhes 95:102408. https://doi.org/10.1016/j.ijadhadh.2019.102408

    Article  CAS  Google Scholar 

  6. Antov P, Savov V, Neykov N (2020) Sustainable bio-based adhesives for eco-friendly wood composites: a review. Wood Res 65:51–62

    Article  CAS  Google Scholar 

  7. Geng X, Li K (2006) Investigation of wood adhesives from kraft lignin and polyethylenimine. J Adhes Sci Technol 20(8):847–858. https://doi.org/10.1163/156856106777638699

    Article  CAS  Google Scholar 

  8. Li K, Geng X, Simonsen J, Karchesy J (2004) Novel wood adhesives from condensed tannins and polyethylenimine. Int J Adhes Adhes 24(4):327–333. https://doi.org/10.1016/j.ijadhadh.2003.11.004

    Article  CAS  Google Scholar 

  9. Bekhta P, Müller M, Hunko I (2020) Properties of thermoplastic-bonded plywood: effects of the wood species and types of the thermoplastic films. Polymers 12(11):2582. https://doi.org/10.3390/polym12112582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kajaks J, Kalnins K, Reihmane S, Bernava A (2014) Recycled thermoplastic polymer hot melts utilization for birch wood veneer bonding. Prog Rubber Plast Recycl Technol 30:87–102. https://doi.org/10.1177/147776061403000202

    Article  Google Scholar 

  11. Song W, Wei W, Li X, Zhang S (2016) Utilization of polypropylene film as an adhesive to prepare formaldehyde-free, weather-resistant plywood-like composites: process optimization, performance evaluation, and interface modification. BioResources 12(1):228–254. https://doi.org/10.15376/biores.12.1.228-254

    Article  Google Scholar 

  12. Gaugler M, Luedtke J, Grigsby WJ, Krause A (2019) A new methodology for rapidly assessing interfacial bonding within fibre-reinforced thermoplastic composites. Int J Adhes Adhes 89:66–71. https://doi.org/10.1016/j.ijadhadh.2018.11.010

    Article  CAS  Google Scholar 

  13. Luedtke J, Gaugler M, Grigsby WJ, Krause A (2019) Understanding the development of interfacial bonding within PLA/wood-based thermoplastic sandwich composites. Ind Crops Prod 127:129–134. https://doi.org/10.1016/j.indcrop.2018.10.069

    Article  CAS  Google Scholar 

  14. Grigsby WJ, Puri A, Gaugler M, Lüedtke J, Krause A (2020) Bonding wood veneer with biobased poly(lactic acid) thermoplastic polyesters: potential applications for consolidated wood veneer and overlay products. Fibers 8:50. https://doi.org/10.3390/fib8080050

    Article  CAS  Google Scholar 

  15. Bal BC, Bektaş İ, Mengeloğlu F, Karakuş K, Ökkeş Demir H (2015) Some technological properties of poplar plywood panels reinforced with glass fiber fabric. Constr Build Mater 101:952–957. https://doi.org/10.1016/j.conbuildmat.2015.10.152

    Article  Google Scholar 

  16. Jorda J, Kain G, Barbu M-C, Petutschnigg A, Král P (2021) Influence of adhesive systems on the mechanical and physical properties of flax fiber reinforced beech plywood. Polymers 13(18):3086. https://doi.org/10.3390/polym13183086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu H, Nakao T, Tanaka C, Yoshinobu M, Katayama H (1998) Effects of fiber length and orientation on elasticity of fiber-reinforced plywood. J Wood Sci 44(5):343–347. https://doi.org/10.1007/BF01130445

    Article  Google Scholar 

  18. Kramár S, Trcala M, Chitbanyong K, et al (2020) Basalt-fiber-reinforced polyvinyl acetate resin: a coating for ductile plywood panels. Materials 13(1):49. https://doi.org/10.3390/ma13010049

    Article  CAS  Google Scholar 

  19. Choi SW, Li M, Lee WI, Kim HS (2014) Analysis of buckling load of glass fiber/epoxy-reinforced plywood and its temperature dependence. J Compos Mater 48(18):2191–2206. https://doi.org/10.1177/0021998313495071

    Article  Google Scholar 

  20. Arya S, Kumar R, Chauhan S, Kelkar BU (2023) Development of natural fiber reinforced thermoplastic bonded hybrid wood veneer composite. Constr Build Mater 368:130459. https://doi.org/10.1016/j.conbuildmat.2023.130459

    Article  CAS  Google Scholar 

  21. Jorda J, Kain G, Barbu M-C, Köll B, Petutschnigg A, Král P (2022) Mechanical properties of cellulose and flax fiber unidirectional reinforced plywood. Polymers 14(4):843. https://doi.org/10.3390/polym14040843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hardwood Plywood & Veneer Association, DBA Decorative Hardwoods Association (2020) ANSI/HPVA HP-1-2020

  23. Banjo AD, Agrawal V, Auad ML, Celestine A-DN (2022) Moisture-induced changes in the mechanical behavior of 3D printed polymers. Composites Part C: Open Access 7:100243. https://doi.org/10.1016/j.jcomc.2022.100243

    Article  CAS  Google Scholar 

  24. Yang H-S, Wolcott MP, Kim H-S, Kim S, Kim H-J (2007) Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos Struct 79(3):369–375. https://doi.org/10.1016/j.compstruct.2006.02.016

    Article  Google Scholar 

  25. Felix JM, Gatenholm P (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci 42(3):609–620. https://doi.org/10.1002/app.1991.070420307

    Article  CAS  Google Scholar 

  26. Demirkir C, Colakoglu G, Colak S, Aydin I, Candan Z (2016) Influence of aging procedure on bonding strength and thermal conductivity of plywood panels. Acta Phys Pol A 129(6):1230–1234. https://doi.org/10.12693/APhysPolA.129.1230

    Article  CAS  Google Scholar 

  27. Senalik CA, Ross R, Zelinka S, Lebow S, Cai Z (2017) Accelerated aging of preservative-treated structural plywood. Unpublished manuscript. https://doi.org/10.2737/FPL-RP-691

  28. Assarar M, Scida D, El Mahi A, Poilâne C, Ayad R (2011) Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: flax–fibres and glass–fibres. Mater Des 32(2):788–795. https://doi.org/10.1016/j.matdes.2010.07.024

    Article  CAS  Google Scholar 

  29. Ghasemzadeh-Barvarz M, Duchesne C, Rodrigue D (2015) Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites. J Compos Mater 49(30):3781–3798. https://doi.org/10.1177/0021998314568576

    Article  CAS  Google Scholar 

  30. Geyer R, Jambeck JR, Law KL Production, use, and fate of all plastics ever made. Science Advances 3(7):e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Plastics Europe (2022) PE-plastics-the-facts_final_digital-1

  32. Ellis WD, O’Dell JL (1999) Wood-polymer composites made with acrylic monomers, isocyanate, and maleic anhydride. J Appl Polym Sci 73(12):2493–2505. https://doi.org/10.1002/(SICI)1097-4628(19990919)73:12%3c2493::AID-APP18%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  33. Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80(3):403–419. https://doi.org/10.1016/S0141-3910(02)00372-5

    Article  CAS  Google Scholar 

  34. Skoczinski P, Carus M, Tweddle G, Ruiz P, Hark N, Zhang A, De Guzman D, Ravenstijn J, Käb H, Raschka A (2024) Bio-based building blocks and polymers—global capacities, production and trends 2023–2028 nova-Institut GmbH. https://doi.org/10.52548/VXTH2416

  35. Van de Velde K, Baetens E (2001) Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol Mater Eng 286(6):342–349. https://doi.org/10.1002/1439-2054(20010601)286:6%3c342::AID-MAME342%3e3.0.CO;2-P

    Article  Google Scholar 

  36. Avat F (1993) Contribution à l’étude des traitements thermiques du bois jusqu’à 300 °C: transformations chimiques et caractérisations physico-chimiques, p 363

  37. Scida D, Assarar M, Poilâne C, Ayad R (2013) Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Compos B Eng 48:51–58. https://doi.org/10.1016/j.compositesb.2012.12.010

    Article  CAS  Google Scholar 

  38. Kajaks J, Reihmane S, Grinbergs U, Kalnins K (2012) Use of innovative environmentally friendly adhesives for wood veneer bonding. Proc Estonian Acad Sci 61(3):207. https://doi.org/10.3176/proc.2012.3.10

    Article  CAS  Google Scholar 

  39. Viguier J, Bourreau D, Bocquet J-F, Pot G, Bléron L, Lanvin J-D (2017) Modelling mechanical properties of spruce and Douglas fir timber by means of X-ray and grain angle measurements for strength grading purpose. Eur J Wood Wood Prod 75(4):527–541. https://doi.org/10.1007/s00107-016-1149-4

    Article  CAS  Google Scholar 

  40. Burdurlu E, Kilic M, Ilce AC, Uzunkavak O (2007) The effects of ply organization and loading direction on bending strength and modulus of elasticity in laminated veneer lumber (LVL) obtained from beech (Fagus orientalis L.) and lombardy poplar (Populus nigra L.). Constr Build Mater 21(8):1720–1725. https://doi.org/10.1016/j.conbuildmat.2005.05.002

    Article  Google Scholar 

  41. Han L, Han C, Dong L (2013) Effect of crystallization on microstructure and mechanical properties of poly[(ethylene oxide)-block-(amide-12)]-toughened poly(lactic acid) blend. Polym Int 62(2):295–303. https://doi.org/10.1002/pi.4300

    Article  CAS  Google Scholar 

  42. Castanié B, Peignon A, Marc C, Eyma F, Cantarel A, Serra J, Curti R, Hadiji H, Denaud L, Girardon S, Marcon B (2024) Wood and plywood as eco-materials for sustainable mobility: a review. Compos Struct 329:117790. https://doi.org/10.1016/j.compstruct.2023.117790

    Article  Google Scholar 

  43. Kamke FA, Lee JN (2007) Adhesive penetration in wood—a review. Wood Fiber Sci 39:205–220

  44. Frihart CR (2012) Wood adhesion and adhesives. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, pp 234–271. https://doi.org/10.1201/b12487-13

    Chapter  Google Scholar 

  45. Ebewele RO, River BH, Koutsky JA (1986) Relationship between phenolic adhesive chemistry and adhesive joint performance: effect of filler type on fraction energy. J Appl Polym Sci 31(7):2275–2302. https://doi.org/10.1002/app.1986.070310726

    Article  CAS  Google Scholar 

  46. Siau JF (1984) Transport processes in wood. Springer-Verlag

    Book  Google Scholar 

  47. Marra AA (1992) Technology of wood bonding: principles in practice. Springer US

  48. Pizzi A, Leban J-M, Kanazawa F, Properzi M, Pichelin F (2004) Wood dowel bonding by high-speed rotation welding. J Adhes Sci Technol 18(11):1263–1278. https://doi.org/10.1163/1568561041588192

    Article  CAS  Google Scholar 

  49. NISKA KO, SANADI AR (2008) 3 - Interactions between wood and synthetic polymers. In: Niska KO, Sain M (eds) Wood–polymer composites. Woodhead Publishing, pp 41–71

  50. Konnerth J, Gindl W (2006) Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung 60(4):429–433. https://doi.org/10.1515/HF.2006.067

    Article  CAS  Google Scholar 

  51. Kajita H, Imamura Y (1991) Improvement of physical and biological properties of particleboards by impregnation with phenolic resin. Wood Sci Technol 26:63–70. https://doi.org/10.1007/BF00225692

Download references

Acknowledgements

This work was supported by the "Investissements d'Avenir" programme, ISITE-BFC project (ANR-15-IDEX-0003 contract), as part of the WooFHi project and by EIPHI Graduate School under (“ANR-17-EURE-0002”). Authors are grateful to MIFHySTO technological platform (FEMTO-ST, France) for the use of X-ray nanotomography. We also sincerely wish to thank Louis Denaud, Guillaume Pot, Jean-Claude Butaud, Stéphane Girardon, and Leyne Demoulin from the WMM (Wood Material and Machining) team at LaBoMaP research laboratory (Cluny, France) for providing the veneers and for the insightful discussions conducted within the framework of the WooFHi project on veneer peeling and the properties of wood veneers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Prunier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 161 kb)

Supplementary file 2 (PDF 106 kb)

Appendices

Appendix 1

See Table 3

Table 3 ILSS values and fracture surface categorisation of the plywood specimens tested under the various combinations of pressure and heating times with the three selected adhesives

Appendix 2

See Table 4.

Table 4 ILSS results for plywood interface hybridisation with flax fibre for the different wood species and adhesives

Appendix 3

See Table 5

Table 5 ILSS measured for the different wood species, adhesives, and with/without fibre reinforcement after the ageing processes

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prunier, C., Rousseau, J., Butaud, P. et al. Investigating the influence of fabrication parameters, flax fibre reinforcement, and ageing on interlaminar shear strength in thermoplastic-bonded wood veneers. J Mater Sci 59, 10810–10832 (2024). https://doi.org/10.1007/s10853-024-09767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09767-2

Navigation