Skip to main content
Log in

Plasma etching assisted fabrication of PDA/PEI modified PVDF membranes for oil/water emulsion separation

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The PDA/PEI modification technology is commonly employed to improve the resistance to membrane fouling of polymeric membranes used in the treatment of oily wastewater. Nevertheless, the surface characteristics of membrane materials frequently restrict the implementation of the modification technique in terms of both the amount and speed of deposition. The hydrophobic membranes, such as PVDF and PTFE, have a surface with very low surface free energy and only inert functional groups. This surface is not suitable for the deposition of PDA/PEI. This study utilized plasma etching treatment to break the C–H and C–F bonds on the surface of the PVDF membrane, resulting in the introduction of oxygen-containing functional groups. During the deposition process, the PDA/PEI exhibited a tendency to chemically connect to material surfaces that included oxygen-containing functional groups, such as –OH, by processes such as hydrogen bonding. During the modification procedure, the etched membrane experienced an increase in the mass of PDA/PEI deposition and the strength of interfacial bonding. As a result, the modified membrane acquired improved hydrophilicity and anti-fouling performance. In summary, this study offers useful insights for improving the surface properties of hydrophobic polymeric membranes to prevent membrane fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Mao X, Wang Y, Yan X et al (2023) A review of superwetting membranes and nanofibers for efficient oil/water separation. J Mater Sci 58:3–33. https://doi.org/10.1007/s10853-022-07945-8

    Article  CAS  Google Scholar 

  2. Wang X, Xiao C, Chen M, Liu H, Zhang F, Luo W (2019) Design of a novel PVDF-HFP/GE tubular nanofiber membranes for ultrafast and continuous oil/water separation. J Mater Sci 54:13810–13820. https://doi.org/10.1007/s10853-019-03798-w

    Article  CAS  Google Scholar 

  3. Gao Y, Qi Y, Wang S, Zhou X, Lyu L, Jin G (2022) Superhydrophobic polyphenylene sulfide fiber paper with nanofiber network-like structure prepared via regulation of TIPS process for oil/water separation. J Mater Sci 57:20531–20542. https://doi.org/10.1007/s10853-022-07944-9

    Article  CAS  Google Scholar 

  4. Gao N, Wang L, Zhang Y, Liang F, Fan Y (2022) Modified ceramic membrane with pH/ethanol induced switchable superwettability for antifouling separation of oil-in-acidic water emulsions. Sep Purif Technol 293:121022. https://doi.org/10.1016/j.seppur.2022.121022

    Article  CAS  Google Scholar 

  5. Castel C, Favre E (2018) Membrane separations and energy efficiency. J Membr Sci 548:345–357. https://doi.org/10.1016/j.memsci.2017.11.035

    Article  CAS  Google Scholar 

  6. Zsirai T, Qiblawey H, A-Marri MJ, Judd S (2016) The impact of mechanical shear on membrane flux and energy demand. J Membr Sci 516:56–63. https://doi.org/10.1016/j.memsci.2016.06.010

    Article  CAS  Google Scholar 

  7. Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L (2013) Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 25:2071–2076. https://doi.org/10.1002/adma.201204520

    Article  CAS  PubMed  Google Scholar 

  8. Gopi S, Kargl R, Kleinschek KS, Pius A, Thomas S (2018) Chitin nanowhisker—inspired electrospun PVDF membrane for enhanced oil–water separation. J Environ Manage 228:249–259. https://doi.org/10.1016/j.jenvman.2018.09.039

    Article  CAS  PubMed  Google Scholar 

  9. Yang X, Sun H, Pal A, Bai Y, Shao L (2018) Biomimetic silicification on membrane surface for highly efficient treatments of both oil-in-water emulsion and protein wastewater. ACS Appl Mater Interfaces 10:29982–29991. https://doi.org/10.1021/acsami.8b09218

    Article  CAS  PubMed  Google Scholar 

  10. Yang X, Yan L, Wu Y, Liu Y, Shao L (2019) Biomimetic hydrophilization engineering on membrane surface for highly-efficient water purification. J Membr Sci 589:117223. https://doi.org/10.1016/j.memsci.2019.117223

    Article  CAS  Google Scholar 

  11. Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD (2017) Surface modification of water purification membranes. Angew Chem Int Edit 56:4662–4711. https://doi.org/10.1002/anie.201601509

    Article  CAS  Google Scholar 

  12. Wen Y, Yang X, Li Y, Yan L, Sun P, Shao L (2024) Hydrogel/mineral-integrated interface for synergistic antifouling membrane. Sep Purif Technol 340:126775. https://doi.org/10.1016/j.seppur.2024.126775

    Article  CAS  Google Scholar 

  13. Zhao C, Ye Y, Chen X, Da X, Qiu M, Fan Y (2022) Charged modified tight ceramic ultrafiltration membranes for treatment of cationic dye wastewater. Chin J Chem Eng 41:267–277. https://doi.org/10.1016/j.cjche.2021.11.007

    Article  CAS  Google Scholar 

  14. Lee XJ, Show PL, Katsuda T, Chen W-H, Chang J-S (2018) Surface grafting techniques on the improvement of membrane bioreactor: state-of-the-art advances. Bioresour Technol 269:489–502. https://doi.org/10.1016/j.biortech.2018.08.090

    Article  CAS  PubMed  Google Scholar 

  15. Zhang DY, Hao Q, Liu J, Shi YS, Zhu J, Su L, Wang Y (2018) Antifouling polyimide membrane with grafted silver nanoparticles and zwitterion. Sep Purif Technol 192:230–239. https://doi.org/10.1016/j.seppur.2017.10.018

    Article  CAS  Google Scholar 

  16. Low SC, Ng QH, Tan LS (2019) Study of magnetic-responsive nanoparticle on the membrane surface as a membrane antifouling surface coating. J Polym Res 26:70. https://doi.org/10.1007/s10965-019-1734-4

    Article  CAS  Google Scholar 

  17. Yu Q, Zhou L, Su Y, Wu H, You X, Shen J, Zhang R, Jiang Z (2019) Assembly of self-cleaning perfluoroalkyl coating on separation membrane surface. Appl Surf Sci 496:143674. https://doi.org/10.1016/j.apsusc.2019.143674

    Article  CAS  Google Scholar 

  18. Dahi A, Fatyeyeva K, Langevin D, Chappey C, Poncin-Epaillard F, Marais S (2017) Effect of cold plasma surface treatment on the properties of supported ionic liquid membranes. Sep Purif Technol 187:127–136. https://doi.org/10.1016/j.seppur.2017.05.055

    Article  CAS  Google Scholar 

  19. Vo TS, Vo TTBC (2022) Surface characterization of polyimide and polyethylene terephthalate membranes toward plasma and UV treatments. Prog Nat Sci 32:314–327. https://doi.org/10.1016/j.pnsc.2022.03.010

    Article  CAS  Google Scholar 

  20. Gao N, Wang L, Hu X, Liu H (2023) Mussel-inspired in-situ metallization of nano-Ag on ceramic membrane for catalytic degradation of dye wastewater. J Alloy Compd 955:170191. https://doi.org/10.1016/j.jallcom.2023.170191

    Article  CAS  Google Scholar 

  21. Wang L, Gao N, Han F, Mao Y, Tian J (2023) Immobilization of nano-Cu on ceramic membrane by dopamine assisted flowing synthesis for enhanced catalysis. Sep Purif Technol 326:124781. https://doi.org/10.1016/j.seppur.2023.124781

    Article  CAS  Google Scholar 

  22. Gao N, Fan W, Xu Z-K (2020) Ceramic membrane with protein-resistant surface via dopamine/diglycolamine co-deposition. Sep Purif Technol 234:116135. https://doi.org/10.1016/j.seppur.2019.116135

    Article  CAS  Google Scholar 

  23. Yang H-C, Waldman RZ, Wu M-B, Hou J, Chen L, Darling SB, Xu Z-K (2018) Dopamine: Just the right medicine for membranes. Adv Funct Mater 28:1705327. https://doi.org/10.1002/adfm.201705327

    Article  CAS  Google Scholar 

  24. Zhao C, Yu X, Da X, Qiu M, Chen X, Fan Y (2021) Fabrication of a charged PDA/PEI/Al2O3 composite nanofiltration membrane for desalination at high temperatures. Sep Purif Technol 263:118388. https://doi.org/10.1016/j.seppur.2021.118388

    Article  CAS  Google Scholar 

  25. Yang S-J, Zou L-Y, Liu C et al (2020) Codeposition of levodopa and polyethyleneimine: reaction mechanism and coating construction. ACS Appl Mater Interfaces 12:54094–54103. https://doi.org/10.1021/acsami.0c16142

    Article  CAS  PubMed  Google Scholar 

  26. Zin G, Wu J, Rezzadori K, Petrus JCC, Di Luccio M, Li Q (2019) Modification of hydrophobic commercial PVDF microfiltration membranes into superhydrophilic membranes by the mussel-inspired method with dopamine and polyethyleneimine. Sep Purif Technol 212:641–649. https://doi.org/10.1016/j.seppur.2018.10.014

    Article  CAS  Google Scholar 

  27. Luan W, Nie C, Chen X, Tang Z, Qiu M, Fan Y (2022) Effective construction of anti-fouling zwitterion-functionalized ceramic membranes for separation of oil-in-water emulsion based on PDA/PEI co-deposition. J Environ Chem Eng 10:108396. https://doi.org/10.1016/j.jece.2022.108396

    Article  CAS  Google Scholar 

  28. Lv Y, Du Y, Qiu W-Z, Xu Z-K (2017) Nanocomposite membranes via the codeposition of polydopamine/polyethylenimine with silica nanoparticles for enhanced mechanical strength and high water permeability. ACS Appl Mater Interfaces 9:2966–2972. https://doi.org/10.1021/acsami.6b13761

    Article  CAS  PubMed  Google Scholar 

  29. Lv Y, Du Y, Chen Z-X, Qiu W-Z, Xu Z-K (2018) Nanocomposite membranes of polydopamine/electropositive nanoparticles/polyethyleneimine for nanofiltration. J Membr Sci 545:99–106. https://doi.org/10.1016/j.memsci.2017.09.066

    Article  CAS  Google Scholar 

  30. Zhang W, Liao Z, Meng X, Ai Niwaer AE, Wang H, Li X, Liu D, Zuo F (2020) Fast coating of hydrophobic upconversion nanoparticles by NaIO4-induced polymerization of dopamine: Positively charged surfaces and in situ deposition of Au nanoparticles. Appl Surf Sci 527:146821. https://doi.org/10.1016/j.apsusc.2020.146821

    Article  CAS  Google Scholar 

  31. Jiang J, Zhu L, Zhu L, Zhu B, Xu Y (2011) Surface Characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27:14180–14187. https://doi.org/10.1021/la202877k

    Article  CAS  PubMed  Google Scholar 

  32. Kim Y, You A, Kim D, Bisht H, Heo Y, Hong D, Kim M, Kang SM (2022) Effect of N-Methylation on dopamine surface chemistry. Langmuir 38:6404–6410. https://doi.org/10.1021/acs.langmuir.2c00513

    Article  CAS  PubMed  Google Scholar 

  33. Lv Y, Yang S-J, Du Y, Yang H-C, Xu Z-K (2018) Co-deposition Kinetics of polydopamine/polyethyleneimine coatings: effects of solution composition and substrate surface. Langmuir 34:13123–13131. https://doi.org/10.1021/acs.langmuir.8b02454

    Article  CAS  PubMed  Google Scholar 

  34. Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. P Natl A Sci 103:12999–13003. https://doi.org/10.1073/pnas.0605552103

    Article  CAS  Google Scholar 

  35. Luo C, Liu Q (2017) Oxidant-Induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation. ACS Appl Mater Interfaces 9:8297–8307. https://doi.org/10.1021/acsami.6b16206

    Article  CAS  PubMed  Google Scholar 

  36. Liao P, You L, Zheng WJ, Zou W, Yan J, Yang H, Yang F (2022) Self-cleaning expanded polytetrafluoroethylene-based hybrid membrane for water filtration. RSC Adv 12:13228–13234. https://doi.org/10.1039/D2RA01026G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gryta M (2021) Surface modification of polypropylene membrane by helium plasma treatment for membrane distillation. J Membr Sci 628:119265. https://doi.org/10.1016/j.memsci.2021.119265

    Article  CAS  Google Scholar 

  38. Zhang Y, Ma J, Shao L (2020) Ultra-thin trinity coating enabled by competitive reactions for unparalleled molecular separation. J Mater Chem A 8:5078–5085. https://doi.org/10.1039/C9TA12670H

    Article  CAS  Google Scholar 

  39. Li Y, Yang X, Yan L, Dang G, Sun P, Nxumalo EN, Mamba BB, Shao L (2024) Engineering activated mineralized antifouling membranes via interface segregation tailoring. J Membr Sci 696:122526. https://doi.org/10.1016/j.memsci.2024.122526

    Article  CAS  Google Scholar 

  40. Sringari SS, Raja VK (2023) Treatment of food processing industries wastewater using a novel Fuller’s earth clay-based tubular ceramic membrane. Water Sci Technol 88:2533–2546. https://doi.org/10.2166/wst.2023.374

    Article  CAS  PubMed  Google Scholar 

  41. Ding D, Mao H, Chen X, Qiu M, Fan Y (2018) Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions. J Membr Sci 565:303–310. https://doi.org/10.1016/j.memsci.2018.08.035

    Article  CAS  Google Scholar 

  42. Zhang R, Su Y, Zhao X, Li Y, Zhao J, Jiang Z (2014) A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). J Membr Sci 470:9–17. https://doi.org/10.1016/j.memsci.2014.07.006

    Article  CAS  Google Scholar 

  43. Yang X, Sun P, Wen Y et al (2024) Protein-activated atomic layer deposition for robust crude-oil-repellent hierarchical nano-armored membranes. Sci Bull 69:218–226. https://doi.org/10.1016/j.scib.2023.12.001

    Article  CAS  Google Scholar 

  44. Hu X, Ke Y, Zhang M, Niu H, Wu D, Zhao L (2021) Understanding the self-polymerization mechanism of dopamine by molecular simulation and applying dopamine surface modification to improve the interfacial adhesion of polyimide fibers with epoxy resin matrix. High Perform Polym 33:601–614. https://doi.org/10.1177/0954008320988332

    Article  CAS  Google Scholar 

  45. Chen X, Zou D, Lin Y, Zhang W, Qiu M, Fan Y (2018) Enhanced performance arising from low-temperature preparation of α-alumina membranes via titania doping assisted sol-gel method. J Membr Sci 559:19–27. https://doi.org/10.1016/j.memsci.2018.04.032

    Article  CAS  Google Scholar 

  46. Gu Q, Ng TCA, Zhang L, Lyu Z, Zhang Z, Ng HY, Wang J (2020) Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling. Sep Purif Technol 235:116177. https://doi.org/10.1016/j.seppur.2019.116177

    Article  CAS  Google Scholar 

  47. Xiong Z, He Z, Mahmud S, Yang Y, Zhou L, Hu C, Zhao S (2020) Simple Amphoteric Charge Strategy to Reinforce Superhydrophilic Polyvinylidene Fluoride Membrane for Highly Efficient Separation of Various Surfactant-Stabilized Oil-in-Water Emulsions. ACS Appl Mater Interfaces 12:47018–47028. https://doi.org/10.1021/acsami.0c13508

    Article  CAS  PubMed  Google Scholar 

  48. Li R, Li J, Rao L, Lin H, Shen L, Xu Y, Chen J, Liao B-Q (2021) Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation. J Membr Sci 619:118790. https://doi.org/10.1016/j.memsci.2020.118790

    Article  CAS  Google Scholar 

  49. da Silva AFV, Della Rocca DG, Moreira RFPM, Oliveira JV, Ambrosi A, Di Luccio M (2024) Synergistic effects of PVDF membrane surface functionalization with polydopamine and titanium dioxide for enhanced oil/water separation and photocatalytic behavior. J Environ Chem Eng 12:111854. https://doi.org/10.1016/j.jece.2023.111854

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Open Fund Project of Chenguang High Performance Fluorine Material Innovation Center (SCFZ2204) and Innovation and Entrepreneurship Projects for College Students (CX2023048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Yang, G. & Luo, Q. Plasma etching assisted fabrication of PDA/PEI modified PVDF membranes for oil/water emulsion separation. J Mater Sci 59, 9165–9181 (2024). https://doi.org/10.1007/s10853-024-09766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09766-3

Navigation