Skip to main content
Log in

Substrate-dependent structural evolution during the oxidation of SiNx thin films

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SiNx thin films have garnered attention as promising barrier films, primarily due to their low impurity diffusion rates, making them suitable for various technological applications. Despite their potential, these films face challenges because they are prone to degradation in hostile environments. This study investigated the oxidation behavior of SiNx thin films, particularly when deposited on two different types of substrates: rigid silicon (Si) and flexible polyethylene terephthalate (PET) films. A thorough microstructural analysis of the SiNx films reveals their detailed morphological and compositional characteristics, enabling a comparison between the SiNx/Si and SiNx/PET films. This study further investigates the impacts of high-temperature and humidity exposure on SiNx thin films, systematically elucidating the degradation behaviors and underlying mechanisms. The structural evolution during SiNx film oxidation is illustrated at the nanoscale, and the factors contributing to the oxidation were analyzed. This study deepens our understanding of the interplay between oxidation processes and the unique environmental conditions of substrates, offering insights into enhancing the stability and reliability of these materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The experimental data generated during the current study are available from the corresponding author on reasonable request.

References

  1. Iqbal A, Jackson WB, Tsai CC, Allen JW, Bates CW Jr (1987) Electronic structure of silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy. J Appl Phys 61:2947–2954

    Article  CAS  Google Scholar 

  2. Chen TN et al (2006) High-performance transparent barrier films of SiOx∕SiNx stacks on flexible polymer substrates. J Electrochem Soc 153:F244–F248

    Article  CAS  Google Scholar 

  3. Habraken FHPM, Kuiper AET (1994) Silicon nitride and oxynitride films. Mater Sci Eng R Rep 12:123–175

    Article  Google Scholar 

  4. Gatz S, Plagwitz H, Altermatt PP, Terheiden B, Brendel R (2008) Thermal stability of amorphous silicon/silicon nitride stacks for passivating crystalline silicon solar cells. Appl Phys Lett 93:173502-1–173502-3

    Article  Google Scholar 

  5. Du Q et al (2017) Gamma radiation effects in amorphous silicon and silicon nitride photonic devices. Opt Lett 42:587–590

    Article  CAS  PubMed  Google Scholar 

  6. Kuo Y (1994) Thin film transistors with graded SiNx gate dielectrics. J Electrochem Soc 141:1061–1065

    Article  CAS  Google Scholar 

  7. Huang W et al (2003) Low temperature PECVD SiNx films applied in OLED packaging. Mater Sci Eng B 98:248–254

    Article  Google Scholar 

  8. Han J, Yin YJ, Han D, Dong L (2017) Improved PECVD SixNy film as a mask layer for deep wet etching of the silicon. Mater Res Express 4:096301-1–096301-7

    Article  Google Scholar 

  9. Ulvestad A, Mæhlen JP, Kirkengen M (2018) Silicon nitride as anode material for Li-ion batteries: Understanding the SiNx conversion reaction. J Power Sources 399:414–421

    Article  CAS  Google Scholar 

  10. Cho S-K, Cho T-Y, Lee WJ, Ryu J, Lee JH (2021) Structural and gas barrier properties of hydrogenated silicon nitride thin films prepared by roll-to-roll microwave plasma-enhanced chemical vapor deposition. Vacuum 188:110167-1–110167-9

    Article  Google Scholar 

  11. Cho T-Y et al (2018) Moisture barrier and bending properties of silicon nitride films prepared by roll-to-roll plasma enhanced chemical vapor deposition. Thin Solid Films 660:101–107

    Article  CAS  Google Scholar 

  12. Bilger G, Voss T, Schlenker T, Strohm A (2006) High-temperature diffusion barriers from Si-rich silicon-nitride. Surf Interface Anal 38:1687–1691

    Article  CAS  Google Scholar 

  13. Huang H et al (2006) Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater Sci Eng A 435–436:453–459

    Article  Google Scholar 

  14. Oh SJ, Ma BS, Yang C, Kim T-S (2022) Intrinsic mechanical properties of free-standing SiNx thin films depending on PECVD conditions for controlling residual stress. ACS Appl Electron Mater 4:3980–3987

    Article  CAS  Google Scholar 

  15. Schmidt S et al (2016) SiNx coatings deposited by reactive high power impulse magnetron sputtering: process parameters influencing the nitrogen content. ACS Appl Mater Interfaces 8:20385–20395

    Article  CAS  PubMed  Google Scholar 

  16. Ovanesyan RA, Hausmann DM, Agarwal S (2015) Low-temperature conformal atomic layer deposition of SiNx films using Si2Cl6 and NH3 plasma. ACS Appl Mater Interfaces 7:10806–10813

    Article  CAS  PubMed  Google Scholar 

  17. Kim KS et al (2017) Silicon nitride deposition for flexible organic electronic devices by VHF (162 MHz)-PECVD using a multi-tile push-pull plasma source. Sci Rep 7:13585-1–13585-7

    Google Scholar 

  18. Wan Y, McIntosh KR, Thomson AF (2013) Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells. AIP Adv 3:032113-1–032113-14

    Article  Google Scholar 

  19. Braña AF et al (2018) Enhancing efficiency of c-Si solar cell by coating nano structured silicon rich silicon nitride films. Thin Solid Films 662:21

    Article  Google Scholar 

  20. Oh MH, Park EK, Kim SM, Heo J, Kim HJ (2016) Long-term stability of SiNx thin-film barriers deposited by low temperature PECVD for OLED. ECS J Solid State Sci Technol 5:R55–R58

    Article  CAS  Google Scholar 

  21. Ma DH et al (2018) Oxidation behavior of amorphous silicon nitride nanoparticles. Ceram Int 44:1443–1447

    Article  CAS  Google Scholar 

  22. Lee WJ, Cho T-Y, Choa S-H, Cho S-K (2021) Environmental reliability and moisture barrier properties of silicon nitride and silicon oxide films using roll-to-roll plasma enhanced chemical vapor deposition. Thin Solid Films 720:138524-1–138524-8

    Article  Google Scholar 

  23. Kuiper AET et al (1989) Thermal oxidation of silicon nitride and silicon oxynitride films. J Vac Sci Technol B 7:455–465

    Article  CAS  Google Scholar 

  24. Hegedüs N, Balázsi K, Balázsi C (2021) Silicon nitride and hydrogenated silicon nitride thin films: a review of fabrication methods and applications. Mater 14:5658-1–5658-21

    Article  Google Scholar 

  25. Jehanathan N, Liu Y, Walmsley B, Dell J, Saunders M (2006) Effect of oxidation on the chemical bonding structure of PECVD SiNx thin films. J Appl Phys 100:123516-1–123516-7

    Article  Google Scholar 

  26. Wood GC (1970) High-temperature oxidation of alloys. Oxid Met 2(1):11–57

    Article  CAS  Google Scholar 

  27. Langelier B et al (2016) An atom probe tomography study of internal oxidation processes in Alloy 600. Acta Mater 109:55–68

    Article  CAS  Google Scholar 

  28. Shen Z et al (2020) Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization. Acta Mater 194:321–336

    Article  CAS  Google Scholar 

  29. Shen Z et al (2020) New insights into the oxidation mechanisms of a Ferritic-Martensitic steel in high-temperature steam. Acta Mater 194:522–539

    Article  CAS  Google Scholar 

  30. Chen K, Zhang L, Shen Z (2020) Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization. Acta Mater 194:156–167

    Article  CAS  Google Scholar 

  31. Hughey MP, Cook RF (2004) Massive stress changes in plasma-enhanced chemical vapor deposited silicon nitride films on thermal cycling. Thin Solid Films 460:7–16

    Article  CAS  Google Scholar 

  32. Freund LB, Suresh S (2004) Thin film materials: stress, defect formation and surface evolution. Cambridge University Press

    Book  Google Scholar 

  33. Malerba C et al (2016) Blistering in Cu2ZnSnS4 thin films: correlation with residual stresses. Mater Des 108:725–735

    Article  CAS  Google Scholar 

  34. Jehanathan N, Walmsley B, Liu Y, Dell J (2007) Oxidation of PECVD SiNx thin films. J Alloys Compd 437:332–338

    Article  CAS  Google Scholar 

  35. Dupuis J, Fourmond E, Ballutaud D, Bererd N, Lemiti M (2010) Optical and structural properties of silicon oxynitride deposited by plasma enhanced chemical vapor deposition. Thin Solid Films 519:1325–1333

    Article  CAS  Google Scholar 

  36. Tien C-L, Lin T-W (2012) Thermal expansion coefficient and thermomechanical properties of SiNx thin films prepared by plasma-enhanced chemical vapor deposition. Appl Opt 51:7229–7235

    Article  CAS  PubMed  Google Scholar 

  37. Banerji N et al (1998) Oxidation processes in hydrogenated amorphous silicon nitride films deposited by ArF laser-induced CVD at low temperatures. Thin Solid Films 317:214–218

    Article  CAS  Google Scholar 

  38. Catheline C, Inal K, Burr A, Georgi F, Cauro R (2018) Hypothetic impact of chemical bonding on the moisture resistance of amorphous SixNyHz by plasma-enhanced chemical vapor deposition. Metall Res Technol 115:406-1–406-6

    Google Scholar 

  39. Lanford WA, Rand MJ (2008) The hydrogen content of plasma-deposited silicon nitride. J Appl Phys 49:2473–2477

    Article  Google Scholar 

  40. Knolle WR, Osenbach JW (1985) The structure of plasma-deposited silicon nitride films determined by infrared spectroscopy. J Appl Phys 58:1248–1254

    Article  CAS  Google Scholar 

  41. Næss MK, Tranell G, Olsen JE, Kamfjord NE, Tang K (2012) Mechanisms and kinetics of liquid silicon oxidation during industrial refining. Oxid Met 78:239–251

    Article  Google Scholar 

  42. Starodub D, Gusev E, Garfunkel E, Gustafsson T (1999) Silicon oxide decomposition and desorption during the thermal oxidation of silicon. Surf Rev Lett 6:45–52

    Article  CAS  Google Scholar 

  43. Opila EJ & Jacobson NS (1998) Volatile Si–O–H species in combustion environments. NASA technical reports server: NTRS Doc. ID: 19980237186, Washington DC, US National Aeronautics and Space Administration

  44. Goodfellow (2024) Properties of polyethylene terephthalate polyester (PET, PETP), https://www.azom.com/article.aspx?ArticleID=2047

Download references

Acknowledgements

This work was supported by the institutional research program (KK2452-20) and the support program for young researchers (BSK24-131) funded by KRICT. The authors also acknowledge support from infrastructure development for the reliability of flexible display technology (TS244-04R).

Author information

Authors and Affiliations

Authors

Contributions

GJ and HY conceived the project and performed environmental testing and material characterizations. SK carried out materials characterizations. JE, TC, and SC carried out sample fabrications, and IS, JL, WL, and KH provided inputs for the analysis. HY directed the project and prepared the manuscript with contributions from all authors.

Corresponding author

Correspondence to Hwanhui Yun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, G., Kim, S., Eom, J. et al. Substrate-dependent structural evolution during the oxidation of SiNx thin films. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09751-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09751-w

Navigation