Skip to main content
Log in

Computational screening of metal–organic frameworks for separation of CO2 and N2 from wet flue gas

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In response to the challenging task of effecting CO2 and N2 adsorption separation under humid gas conditions, this study employs a methodology that integrates molecular simulation with high-throughput screening. The focus is on investigating the adsorption separation of a ternary mixture (CO2/N2/H2O) utilizing the most recent experimental synthesis of metal–organic frameworks (MOFs) from the CoRE-MOF-2019 database. To circumvent the competitive adsorption of water vapor, materials with excessive hydrophilicity are systematically excluded. Subsequently, a univariate analysis is conducted on the remaining 1343 MOFs, exploring the intricate relationships between key structural parameters such as pore limiting diameter, maximum pore cavity diameter of free channels (LCD), pore volume (Vpore), volume surface area (VSA), weight surface area, density (ρ), porosity (φ), Henry coefficient (K), adsorption heat (\(Q_{{{\text{st}}}}^{0}\)), and metal types. The investigation reveals positive correlations between ρ, K, and \(Q_{{{\text{st}}}}^{0}\) with selectivity, while other descriptors exhibit negative correlations. Notably, MOFs enriched with Cd and Cu demonstrate superior performance. Subsequent analysis employs Pearson coefficients and a decision tree model to rank descriptors and identify the top three descriptors (LCD, VSA, and \(Q_{{{\text{st}}}}^{0}\)) influencing performance. Utilizing these descriptors, the decision tree model delineates optimal design criteria: \(Q_{{{\text{st}}}}^{0}\) > 28.296 kJ mol−1, LCD < 5.893 Å, and VSA > 727.596 m2 cm−3. To predict the performance of MOFs that have not yet been synthesized or experimentally validated, we employed the nine descriptors for model training and out-of-sample validation. The decision tree classifier exhibits high prediction accuracy and shows excellent transferability, effectively delineating the boundaries between different performance classes by capturing structural–selectivity correlations. This process culminates in the screening of 15 optimal MOFs, offering theoretical insights for the adsorption separation of CO2 in humid flue gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the original manuscript and in Supplementary Information. Further inquiries can be directed to the corresponding author.

References

  1. Bae Y, Snurr RQ (2011) Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Ed 50:11586–11596. https://doi.org/10.1002/anie.201101891

    Article  CAS  Google Scholar 

  2. Xiang S, He Y, Zhang Z et al (2012) Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 3:954. https://doi.org/10.1038/ncomms1956

    Article  CAS  PubMed  Google Scholar 

  3. Koizumi K, Nobusada K, Boero M (2019) Hydrogen storage mechanism and diffusion in metal–organic frameworks. Phys Chem Chem Phys 21:7756–7764. https://doi.org/10.1039/C8CP07467D

    Article  CAS  PubMed  Google Scholar 

  4. Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129. https://doi.org/10.1126/science.1083440

    Article  CAS  PubMed  Google Scholar 

  5. DeCoste JB, Weston MH, Fuller PE et al (2014) Metal-organic frameworks for oxygen storage. Angew Chem Int Ed 53:14092–14095. https://doi.org/10.1002/anie.201408464

    Article  CAS  Google Scholar 

  6. Düren T, Sarkisov L, Yaghi OM, Snurr RQ (2004) Design of new materials for methane storage. Langmuir 20:2683–2689. https://doi.org/10.1021/la0355500

    Article  CAS  PubMed  Google Scholar 

  7. Zhao X, Wang Y, Li D et al (2018) Metal-organic frameworks for separation. Adv Mater 30:1705189. https://doi.org/10.1002/adma.201705189

    Article  CAS  Google Scholar 

  8. Li J-R, Sculley J, Zhou H-C (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932. https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Xu Q (2019) Metal-organic framework composites for catalysis. Matter 1:57–89. https://doi.org/10.1016/j.matt.2019.05.018

    Article  Google Scholar 

  10. Lee J, Farha OK, Roberts J et al (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450. https://doi.org/10.1039/b807080f

    Article  CAS  PubMed  Google Scholar 

  11. Jiao L, Wang Y, Jiang H, Xu Q (2018) Metal-organic frameworks as platforms for catalytic applications. Adv Mater 30:1703663. https://doi.org/10.1002/adma.201703663

    Article  CAS  Google Scholar 

  12. Orellana-Tavra C, Marshall RJ, Baxter EF et al (2016) Drug delivery and controlled release from biocompatible metal–organic frameworks using mechanical amorphization. J Mater Chem B 4:7697–7707. https://doi.org/10.1039/C6TB02025A

    Article  CAS  PubMed  Google Scholar 

  13. Bernini MC, Fairen-Jimenez D, Pasinetti M et al (2014) Screening of bio-compatible metal–organic frameworks as potential drug carriers using Monte Carlo simulations. J Mater Chem B 2:766–774. https://doi.org/10.1039/C3TB21328E

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Nakamoto T, Dulińska-Molak I et al (2016) Regulating the stemness of mesenchymal stem cells by tuning micropattern features. J Mater Chem B 4:37–45. https://doi.org/10.1039/C5TB02215K

    Article  CAS  PubMed  Google Scholar 

  15. Lustig WP, Mukherjee S, Rudd ND et al (2017) Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev 46:3242–3285. https://doi.org/10.1039/C6CS00930A

    Article  CAS  PubMed  Google Scholar 

  16. Campbell MG, Liu SF, Swager TM, Dincă M (2015) Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J Am Chem Soc 137:13780–13783. https://doi.org/10.1021/jacs.5b09600

    Article  CAS  PubMed  Google Scholar 

  17. Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125. https://doi.org/10.1021/cr200324t

    Article  CAS  PubMed  Google Scholar 

  18. Kadri E, Dhahri K, Zaafouri A et al (2017) Ac conductivity and dielectric behavior of a−Si: H/c−Si1−y Gey/p−Si thin films synthesized by molecular beam epitaxial method. J Alloys Compd 705:708–713. https://doi.org/10.1016/j.jallcom.2017.02.117

    Article  CAS  Google Scholar 

  19. Rasheed M, Mohammed OY, Shihab S, Al-Adili A (2021) Explicit numerical model of solar cells to determine current and voltage. In: Journal of physics: conference series, vol 1795, p 012043. https://doi.org/10.1088/1742-6596/1795/1/012043

  20. Enneffatia M, Rasheed M, Louatia B et al (2021) Investigation of structural, morphology, optical properties and electrical transport conduction of Li0.25 Na0.75 CdVO4 compound. In: Journal of physics: conference series, vol 1795, p 012050. https://doi.org/10.1088/1742-6596/1795/1/012050

  21. Kadri E, Messaoudi O, Krichen M et al (2017) Optical and electrical properties of SiGe/Si solar cell heterostructures: ellipsometric study. J Alloy Compd 721:779–783. https://doi.org/10.1016/j.jallcom.2017.06.025

    Article  CAS  Google Scholar 

  22. Phan A, Doonan CJ, Uribe-Romo FJ et al (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67. https://doi.org/10.1021/ar900116g

    Article  CAS  PubMed  Google Scholar 

  23. Britt D, Furukawa H, Wang B et al (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci USA 106:20637–20640. https://doi.org/10.1073/pnas.0909718106

    Article  PubMed  PubMed Central  Google Scholar 

  24. Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877. https://doi.org/10.1021/ja809459e

    Article  CAS  PubMed  Google Scholar 

  25. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4 O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129:14176–14177. https://doi.org/10.1021/ja076877g

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Q, Luo D, Hua D et al (2022) Design and characterization of metallic glass/graphene multilayer with excellent nanowear properties. Friction 10:1913–1926. https://doi.org/10.1007/s40544-021-0581-6

    Article  CAS  Google Scholar 

  27. Hua D, Zhou Q, Shi Y et al (2023) Revealing the deformation mechanisms of 〈110〉 symmetric tilt grain boundaries in CoCrNi medium-entropy alloy. Int J Plast 171:103832. https://doi.org/10.1016/j.ijplas.2023.103832

    Article  CAS  Google Scholar 

  28. Ren Y, Zhou Q, Hua D et al (2024) Wear-resistant CoCrNi multi-principal element alloy at cryogenic temperature. Sci Bull 69:227–236. https://doi.org/10.1016/j.scib.2023.12.003

    Article  CAS  Google Scholar 

  29. Ben Azaza N, Elleuch S, Rasheed M et al (2019) 3-(p-nitrophenyl)Coumarin derivatives: synthesis, linear and nonlinear optical properties. Opt Mater 96:109328. https://doi.org/10.1016/j.optmat.2019.109328

    Article  CAS  Google Scholar 

  30. Colón YJ, Snurr RQ (2014) High-throughput computational screening of metal–organic frameworks. Chem Soc Rev 43:5735–5749. https://doi.org/10.1039/C4CS00070F

    Article  PubMed  Google Scholar 

  31. Qiao Z, Zhang K, Jiang J (2016) In silico screening of 4764 computation-ready, experimental metal–organic frameworks for CO2 separation. J Mater Chem A 4:2105–2114. https://doi.org/10.1039/C5TA08984K

    Article  CAS  Google Scholar 

  32. Demir H, Keskin S (2022) Hypothetical yet effective: computational identification of high-performing MOFs for CO2 capture. Comput Chem Eng 160:107705. https://doi.org/10.1016/j.compchemeng.2022.107705

    Article  CAS  Google Scholar 

  33. Qiao Z, Peng C, Zhou J, Jiang J (2016) High-throughput computational screening of 137953 metal–organic frameworks for membrane separation of a CO2 /N2 /CH4 mixture. J Mater Chem A 4:15904–15912. https://doi.org/10.1039/C6TA06262H

    Article  CAS  Google Scholar 

  34. Kancharlapalli S, Snurr RQ (2023) High-throughput screening of the CoRE-MOF-2019 database for CO2 capture from wet flue gas: a multi-scale modeling strategy. ACS Appl Mater Interfaces 15:28084–28092. https://doi.org/10.1021/acsami.3c04079

    Article  CAS  PubMed  Google Scholar 

  35. Mohamed SA, Zhao D, Jiang J (2023) Integrating stability metrics with high-throughput computational screening of metal–organic frameworks for CO2 capture. Commun Mater. https://doi.org/10.1038/s43246-023-00409-9

    Article  Google Scholar 

  36. Zhao Y, Zhao Y, Gong Q, Wang Z (2023) Graph transformer with convolution parallel networks for predicting single and binary component adsorption performance of metal-organic frameworks. ACS Appl Mater Interfaces 15:49527–49537. https://doi.org/10.1021/acsami.3c10951

    Article  CAS  PubMed  Google Scholar 

  37. Zhang X, Zhang K, Lee Y (2020) Machine learning enabled tailor-made design of application-specific metal-organic frameworks. ACS Appl Mater Interfaces 12:734–743. https://doi.org/10.1021/acsami.9b17867

    Article  CAS  PubMed  Google Scholar 

  38. Chung YG, Haldoupis E, Bucior BJ et al (2019) Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019. J Chem Eng Data 64:5985–5998. https://doi.org/10.1021/acs.jced.9b00835

    Article  CAS  Google Scholar 

  39. Rappe AK, Casewit CJ, Colwell KS et al (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. https://doi.org/10.1021/ja00051a040

    Article  CAS  Google Scholar 

  40. Addicoat MA, Vankova N, Akter IF, Heine T (2014) Extension of the universal force field to metal-organic frameworks. J Chem Theory Comput 10:880–891. https://doi.org/10.1021/ct400952t

    Article  CAS  PubMed  Google Scholar 

  41. Kancharlapalli S, Gopalan A, Haranczyk M, Snurr RQ (2021) Fast and accurate machine learning strategy for calculating partial atomic charges in metal-organic frameworks. J Chem Theory Comput 17:3052–3064. https://doi.org/10.1021/acs.jctc.0c01229

    Article  CAS  PubMed  Google Scholar 

  42. Limas NG, Manz TA (2018) Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more. RSC Adv 8:2678–2707. https://doi.org/10.1039/C7RA11829E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Limas NG, Manz TA (2016) Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC Adv 6:45727–45747. https://doi.org/10.1039/C6RA05507A

    Article  CAS  Google Scholar 

  44. Manz TA, Limas NG (2016) Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. RSC Adv 6:47771–47801. https://doi.org/10.1039/C6RA04656H

    Article  CAS  Google Scholar 

  45. Potoff JJ, Siepmann JI (2001) Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J 47:1676–1682. https://doi.org/10.1002/aic.690470719

    Article  CAS  Google Scholar 

  46. Horn HW, Swope WC, Pitera JW et al (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678. https://doi.org/10.1063/1.1683075

    Article  CAS  PubMed  Google Scholar 

  47. Willems TF, Rycroft CH, Kazi M et al (2012) Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater 149:134–141. https://doi.org/10.1016/j.micromeso.2011.08.020

    Article  CAS  Google Scholar 

  48. Dubbeldam D, Calero S, Ellis DE, Snurr RQ (2016) RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul 42:81–101. https://doi.org/10.1080/08927022.2015.1010082

    Article  CAS  Google Scholar 

  49. Matito-Martos I, Moghadam PZ, Li A et al (2018) Discovery of an optimal porous crystalline material for the capture of chemical warfare agents. Chem Mater 30:4571–4579. https://doi.org/10.1021/acs.chemmater.8b00843

    Article  CAS  Google Scholar 

  50. Pedregosa F. Scikit-learn: machine learning in python

  51. Liu S, Wang M, Wei S et al (2023) Enhanced CO2 capture in partially interpenetrated MOFs: synergistic effects from functional group, pore size, and steric-hindrance. J Colloid Interface Sci 650:1361–1370. https://doi.org/10.1016/j.jcis.2023.07.058

    Article  CAS  PubMed  Google Scholar 

  52. Li S, Chung YG, Snurr RQ (2016) High-throughput screening of metal-organic frameworks for CO2 capture in the presence of water. Langmuir 32:10368–10376. https://doi.org/10.1021/acs.langmuir.6b02803

    Article  CAS  PubMed  Google Scholar 

  53. Shang S, Yang C, Sun M et al (2022) CO2 capture from wet flue gas using transition metal inserted porphyrin-based metal-organic frameworks as efficient adsorbents. Sep Purif Technol 301:122058. https://doi.org/10.1016/j.seppur.2022.122058

    Article  CAS  Google Scholar 

  54. Lee K, Howe JD, Lin L-C et al (2015) Small-molecule adsorption in open-site metal-organic frameworks: a systematic density functional theory study for rational design. Chem Mater 27:668–678. https://doi.org/10.1021/cm502760q

    Article  CAS  Google Scholar 

  55. Liu Y, Liu J, Lin YS, Chang M (2014) Effects of water vapor and trace gas impurities in flue gas on CO2 /N2 separation using ZIF-68. J Phys Chem C 118:6744–6751. https://doi.org/10.1021/jp4113969

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX22_0363) and the Foreign Experts Project of the Ministry of Science and Technology (No. QN20200214001).

Author information

Authors and Affiliations

Authors

Contributions

JCX and ZK conceptualized and designed the experiments. ZK provided valuable guidance and financial support and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Kang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the publication of this article.

Ethical approval

This article does not involve any research with humans or animals.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3465 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Zhang, K. Computational screening of metal–organic frameworks for separation of CO2 and N2 from wet flue gas. J Mater Sci 59, 9371–9383 (2024). https://doi.org/10.1007/s10853-024-09744-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09744-9

Navigation