Skip to main content

Advertisement

Log in

Effect of heat treatment on the interface and property enhancement of reduced graphene oxide/2024Al matrix composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interface mismatch and weak bonding between the aluminum matrix and reduced graphite oxide (rGO) limits the reinforcing effect of reduced graphene oxide-reinforced aluminum matrix composites. This study utilized vacuum hot-pressing sintering and hot extrusion methods to fabricate rGO/2024Al composite materials and improved the interface bonding of the composite materials through solution treatment and aging. The research results indicate that the tensile strength of the heat-treated composite material increased to 455 MPa, representing a 19% improvement. Appropriate heat treatment processes can aid in enhancing the interfacial structure of composites, augmenting the interfacial bonding strength, and optimizing load transfer efficiency. The reinforcement mechanisms of composites typically include textured strengthening, fine-grained strengthening, and load transfer strengthening. In addition, the rGO can toughen the composites through crack deflection and bridging effects. Therefore, this technique offers a promising route for optimizing properties and improving the interface of aluminum matrix composites reinforced with graphene, via a heat treatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, upon reasonable request.

References

  1. Tielong H, Fucheng W, Jiajun Li, Naiqin Z, Chunnian He (2021) Simultaneously enhanced strength and ductility of Al matrix composites through the introduction of intragranular nano-sized graphene nanoplates. Compos B Eng 212:108700. https://doi.org/10.1016/j.compositesb.2021.108700

    Article  CAS  Google Scholar 

  2. Yang Y, Liu M, Zhou S, Ren W, Zhou Q, Zhang W (2021) Strengthening behaviour of continuous graphene network in metal matrix composites. Carbon 182:825–836. https://doi.org/10.1016/j.carbon.2021.06.067

    Article  CAS  Google Scholar 

  3. Srivastava AK, Pathak VK, Singh R, Dikshit MK (2021) Stress-strain behaviour of graphene reinforced aluminum nanocomposite under compressive loading using molecular dynamics. Mater Today: Proc 44:4521–4525. https://doi.org/10.1016/j.matpr.2020.10.803

    Article  CAS  Google Scholar 

  4. Muñoz-Ibáñez CA, Alfaro-Ponce M, Perez-Lechuga G, Pescador-Rojas JA (2019) Design and application of a quantitative forecast model for determination of the properties of aluminum alloys used in die casting. Int J Metalcast 13:98–111. https://doi.org/10.1007/s40962-018-0231-6

    Article  CAS  Google Scholar 

  5. Sivananthan S, Ravi K, Samson Jerold Samuel C (2020) Effect of SiC particles reinforcement on mechanical properties of aluminium 6061 alloy processed using stir casting route. Mater Today: Proc 21:968–970. https://doi.org/10.1016/j.matpr.2019.09.068

    Article  CAS  Google Scholar 

  6. Soltani S, Azari Khosroshahi R, Taherzadeh Mousavian R, Jiang ZY, Fadavi Boostani A, Brabazon D (2017) Stir casting process for manufacture of Al–SiC composites. Rare Met 36:581–590. https://doi.org/10.1007/s12598-015-0565-7

    Article  CAS  Google Scholar 

  7. Akçamlı N, Şenyurt B, Gökçe H, Ağaoğulları D (2022) Powder metallurgical fabrication of graphene reinforced near-eutectic Al-Si matrix composites: microstructural, mechanical and electrochemical characterization. Eng Sci Technol Int J 31:101052. https://doi.org/10.1016/j.jestch.2021.08.009

    Article  Google Scholar 

  8. Borand G, Uzunsoy D (2022) Fabrication of functionally graded few-layered graphene reinforced Al-4.5Cu alloy by powder metallurgy. J Alloy Compd 923:166348. https://doi.org/10.1016/j.jallcom.2022.166348

    Article  CAS  Google Scholar 

  9. El-Ghazaly A, Anis G, Salem HG (2017) Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Compos Part A-Appl S 95:325–336. https://doi.org/10.1016/j.compositesa.2017.02.006

    Article  CAS  Google Scholar 

  10. Mei Y, Shao P, Sun M, Chen G, Hussain M, Huang F, Zhang Q, Gao X, Pei Y, Zhong S, Wu G (2020) Deformation treatment and microstructure of graphene-reinforced metal matrix nanocomposites: a review of graphene post-dispersion. Int J Min Met Mater 27:888–899. https://doi.org/10.1007/s12613-020-2048-6

    Article  CAS  Google Scholar 

  11. Zhou W, Mikulova P, Fan Y, Kikuchi K, Nomura N, Kawasaki A (2019) Interfacial reaction induced efficient load transfer in few-layer graphene reinforced Al matrix composites for high-performance conductor. Compos Part B-Eng 167:93–99. https://doi.org/10.1016/j.compositesb.2018.12.018

    Article  CAS  Google Scholar 

  12. Yuanyuan J, Tan Zhanqiu Xu, Run FG, Ding-Bang X, Guo Qiang Su, Yishi LZ, Di Z (2018) Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling. Compos A Appl Sci Manuf 111:73–82. https://doi.org/10.1016/j.compositesa.2018.05.022

    Article  CAS  Google Scholar 

  13. Puzhen S, Wenshu Y, Qiang Z, Qingyu M, Xin T, Ziyang X, Qiao Jing Yu, Gaohui ZW (2018) Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method. Compos A Appl Sci Manuf 109:151–162. https://doi.org/10.1016/j.compositesa.2018.03.009

    Article  CAS  Google Scholar 

  14. Ranjan R, Bajpai V (2023) Synthesis of nitrogen-doped graphene and its strengthening effect on aluminium metal matrix composite. Adv Powder Technol 34:104021. https://doi.org/10.1016/j.apt.2023.104021

    Article  CAS  Google Scholar 

  15. Alipour M, Keshavamurthy R, Koppad PG, Shakiba A, Reddy NC (2023) Investigation of microstructure and mechanical properties of cast Al–10Zn–3.5Mg–2.5Cu nanocomposite reinforced with graphene nano sheets produced by ultrasonic assisted stir casting. Int J Metalcast 17:935–946. https://doi.org/10.1007/s40962-022-00826-5

    Article  CAS  Google Scholar 

  16. Yang Z, Wang L, Shi Z, Wang M, Cui Y, Wei B, Xu S, Zhu Y, Fei W (2018) Preparation mechanism of hierarchical layered structure of graphene/copper composite with ultrahigh tensile strength. Carbon 127:329–339. https://doi.org/10.1016/j.carbon.2017.10.095

    Article  CAS  Google Scholar 

  17. Li J, Zhang X, Geng L (2018) Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing. Mater Design 144:159–168. https://doi.org/10.1016/j.matdes.2018.02.024

    Article  CAS  Google Scholar 

  18. Zheng Z, Yang X, Li J, Zhang X, Muhammad I, Geng L (2021) Preparation and properties of graphene nanoplatelets reinforced aluminum composites. Trans Nonferrous Metals Soc China 31:878–886. https://doi.org/10.1016/S1003-6326(21)65546-2

    Article  CAS  Google Scholar 

  19. Sun W, Zhao R, Wang T, Zhan K, Yang Z, Zhao B, Yan Y (2019) An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution. Front Mater Sci 13:375–381. https://doi.org/10.1007/s11706-019-0479-7

    Article  Google Scholar 

  20. Zheng Z, Zhang X, Li J, Geng L (2020) High-content graphene nanoplatelet reinforced aluminum composites produced by ball milling and hot extrusion. Sci China Technol Sci 63:1426–1435. https://doi.org/10.1007/s11431-020-1670-4

    Article  CAS  Google Scholar 

  21. Chen B, Shen J, Ye X, Jia L, Li S, Umeda J, Takahashi M, Kondoh K (2017) Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater 140:317–325. https://doi.org/10.1016/j.actamat.2017.08.048

    Article  CAS  Google Scholar 

  22. Jinmei C, Xiaosong J, Lan L, Yanjun Li, Pål C, Hongliang S, Rui S (2021) Microstructures and mechanical properties of nano-C and in situ Al2O3 reinforced aluminium matrix composites processed by equal-channel angular pressing. J Alloy Compd 876:160159. https://doi.org/10.1016/j.jallcom.2021.160159

    Article  CAS  Google Scholar 

  23. Yu Z, Yang W, Zhou C, Zhang N, Chao Z, Liu H, Cao Y, Sun Y, Shao P, Wu G (2019) Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method. Carbon 141:25–39. https://doi.org/10.1016/j.carbon.2018.09.041

    Article  CAS  Google Scholar 

  24. Zhang L, Hou G, Zhai W, Ai Q, Feng J, Zhang L, Si P, Ci L (2018) Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. J Alloy Compd 748:854–860. https://doi.org/10.1016/j.jallcom.2018.03.237

    Article  CAS  Google Scholar 

  25. Shao P, Chen G, Ju B, Yang W, Zhang Q, Wang Z, Tan X, Pei Y, Zhong S, Hussain M, Wu G (2020) Effect of hot extrusion temperature on graphene nanoplatelets reinforced Al6061 composite fabricated by pressure infiltration method. Carbon 162:455–464. https://doi.org/10.1016/j.carbon.2020.02.080

    Article  CAS  Google Scholar 

  26. Liu ZY, Wang LH, Zan YN, Wang WG, Xiao BL, Wang D, Wang QZ, Ni DR, Ma ZY (2020) Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding. Compos B Eng 199:108268. https://doi.org/10.1016/j.compositesb.2020.108268

    Article  CAS  Google Scholar 

  27. Li G, Xiong B (2017) Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J Alloy Compd 697:31–36. https://doi.org/10.1016/j.jallcom.2016.12.147

    Article  CAS  Google Scholar 

  28. Yang L, Han T, Zhang X, He C, Zhao N (2022) Cu Atoms-assisted rapid fabrication of graphene/Al composites with tailored strain-delocalization effect by spark plasma sintering. Mater Res Lett 10:567–574. https://doi.org/10.1080/21663831.2022.2066484

    Article  CAS  Google Scholar 

  29. Jong-Min Ju, Guofeng W, Kyong-Ho S (2017) Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties. J Alloy Compd 704:585–592. https://doi.org/10.1016/j.jallcom.2017.01.314

    Article  CAS  Google Scholar 

  30. Yang L, Pu B, Zhang X, Sha J, He C, Zhao N (2022) Manipulating mechanical properties of graphene/Al composites by an in-situ synthesized hybrid reinforcement strategy. J Mater Sci Technol 123:13–25. https://doi.org/10.1016/j.jmst.2021.12.072

    Article  CAS  Google Scholar 

  31. Pu B, Mesguich D, Estournès C, Zhang X, Chevallier G, Zhao N, Laurent C (2022) Al matrix composites reinforced by in situ synthesized graphene–Cu hybrid layers: interface control by spark plasma sintering conditions. J Mater Sci 57:6266–6281. https://doi.org/10.1007/s10853-022-07057-3

    Article  CAS  Google Scholar 

  32. Mohammad K-P, Roohollah R, Lubomir O, Peter Š, Volker K (2020) Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: synthesis, microstructure, and mechanical properties. Mater Sci Eng, A 772:138820. https://doi.org/10.1016/j.msea.2019.138820

    Article  CAS  Google Scholar 

  33. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc 195:145–154. https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  34. Li M, Gao H, Liang J, Gu S, You W, Shu D, Wang J, Sun B (2018) Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater Charact 140:172–178. https://doi.org/10.1016/j.matchar.2018.04.007

    Article  CAS  Google Scholar 

  35. Lee AY, Yang K, Anh ND, Park C, Lee SM, Lee TG, Jeong MS (2021) Raman study of D* band in graphene oxide and its correlation with reduction. Appl Surf Sci 536:147990. https://doi.org/10.1016/j.apsusc.2020.147990

    Article  CAS  Google Scholar 

  36. Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*. Graphene 6:1–18. https://doi.org/10.4236/graphene.2017.61001

    Article  CAS  Google Scholar 

  37. Chen K, Tang X, Jia B, Chao C, Wei Y, Hou J, Dong L, Deng X, Xiao TH, Goda K, Guo L (2022) Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nat Mater. https://doi.org/10.1038/s41563-022-01292-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu ZY, Wang LH, Zan YN, Wang WG, Xiao BL, Wang D, Wang QZ, Ni DR, Ma ZY (2020) Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding. Compos Part B-Eng 199:108268. https://doi.org/10.1016/j.compositesb.2020.108268

    Article  CAS  Google Scholar 

  39. Li P, Chen L, Wu B, Zhang L, Gao M (2022) Strength-ductility synergy of reduced graphene oxide/2024Al matrix composites by heterogeneous structure design and hybrid nanoparticles optimized interface. J Alloy Compd 898:162757. https://doi.org/10.1016/j.jallcom.2021.162757

    Article  CAS  Google Scholar 

  40. Yang B, Wang Y, Gao M, Wang C, Guan R (2022) Microstructural evolution and strengthening mechanism of Al–Mg alloys with fine grains processed by accumulative continuous extrusion forming. J Mater Sci Technol 128:195–204. https://doi.org/10.1016/j.jmst.2022.03.032

    Article  CAS  Google Scholar 

  41. Zhao B, Cai Q, Cheng J, Yang S, Chen F (2019) Microstructure and properties of as-cast Al-4.5Cu-1.5Mg alloy refined with Ti-supported TiC nanoparticles via ultrasonic-assisted addition. Mater Sci Eng: A 765:138271. https://doi.org/10.1016/j.msea.2019.138271

    Article  CAS  Google Scholar 

  42. Rao GS, Prasad YVRK (1982) Grain boundary strengthening in strongly textured magnesium produced by hot rolling. Metall Mater Trans A 13:2219–2226. https://doi.org/10.1007/BF02648393

    Article  CAS  Google Scholar 

  43. Dong B, Chai J, Wu G, Zhang H, Zhang Z, Yu J, Xue Y, Meng M (2022) Dynamic recrystallization behavior and strengthening mechanism of Mg–Gd–Y–Zn–Zr alloy during isothermal MDF process. J Market Res 21:1419–1433. https://doi.org/10.1016/j.jmrt.2022.09.121

    Article  CAS  Google Scholar 

  44. Shin SE, Choi HJ, Shin JH, Bae DH (2015) Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82:143–151. https://doi.org/10.1016/j.carbon.2014.10.044

    Article  CAS  Google Scholar 

  45. Yu H, Zhang SQ, Xia JH, Su Q, Ma BC, Wu JH, Zhou JX, Wang XT, Hu LX (2021) Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy. Mater Sci Eng, A 802:140669. https://doi.org/10.1016/j.msea.2020.140669

    Article  CAS  Google Scholar 

  46. Li P, Cao K, Jiang C, Xu S, Gao L, Xiao X, Lu Y (2019) In situ tensile fracturing of multilayer graphene nanosheets for their in-plane mechanical properties. Nanotechnology 30:475708. https://doi.org/10.1088/1361-6528/ab3cd3

    Article  CAS  PubMed  Google Scholar 

  47. Hsieh C-T, Ho Y-C, Wang H, Sugiyama S, Yanagimoto J (2020) Mechanical and tribological characterization of nanostructured graphene sheets/A6061 composites fabricated by induction sintering and hot extrusion. Mater Sci Eng, A 786:138998. https://doi.org/10.1016/j.msea.2020.138998

    Article  CAS  Google Scholar 

  48. Li J, Zhang X, Geng L (2019) Effect of heat treatment on interfacial bonding and strengthening efficiency of graphene in GNP/Al composites. Compos Part A: Appl S 121:487–498. https://doi.org/10.1016/j.compositesa.2019.04.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key Research and Development Program of China (2021YFB3400800), National Natural Science Foundation of China (NO. 51801055), Henan Provincial Department of Science and Technology Research Project (232102230050).

Author information

Authors and Affiliations

Authors

Contributions

BY contributed to conceptualization, methodology, and validation. KL contributed to methodology, formal analysis, writing—original draft, and investigation. AW contributed to conceptualization and supervision. BS contributed to data curation and visualization. JX contributed to conceptualization and investigation. YX contributed to data curation and visualization.

Corresponding author

Correspondence to Bin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Liu, K., Wang, A. et al. Effect of heat treatment on the interface and property enhancement of reduced graphene oxide/2024Al matrix composites. J Mater Sci 59, 8810–8830 (2024). https://doi.org/10.1007/s10853-024-09735-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09735-w

Navigation