Skip to main content
Log in

Trace copper and bi-nonmetallic (N/S) modified ketjenblack (KB) as advanced electrocatalysts for oxygen reduction reactions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sluggish oxygen reduction reaction (ORR) has been one of the most majority bottlenecks of fuel cells and metal-air batteries. It is extremely desirable but challenging to explore low cost, highly active, stable catalysts toward ORR to replace commercial Pt/C catalysts. Herein, a novel hybrid system consisting of trace copper and bi-nonmetallic (N/S) modified the commercial ketjenblack (KB) carbon (Cu–NS–C) has been successfully fabricated by a pyrolysis of Cu–MOF/KB and thiourea to transform crystalline Cu/Cu2O nanoparticles into copper sulfide nanoparticles and the subsequent acid leaching. The optimized Cu–NS–C delivers a half-wave potential of 0.81 V versus RHE and a limiting-current density of 5.0 mA cm−2, which is next to those of commercial 20 wt% Pt/C catalyst. Furthermore, this catalyst demonstrates much better durability and methanol tolerance than Pt/C catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All necessary data are included in the manuscript.

References

  1. Wang L, Snihirova D, Deng M et al (2022) Energy Storage Mater 52:573. https://doi.org/10.1016/j.ensm.2022.08.032

    Article  Google Scholar 

  2. Lin L, Zhu Q, Xu AW (2014) J Am Chem Soc 136:11027. https://doi.org/10.1021/ja504696r

    Article  CAS  PubMed  Google Scholar 

  3. Jingsha Li CG, Li C (2020) ChemSusChem 13:1047. https://doi.org/10.1002/cssc.v13.6

    Article  PubMed  Google Scholar 

  4. Liu X, Li X, Zhao X, Gao Y, Cao Z, Liu J (2022) J Mater Sci 57:6293. https://doi.org/10.1007/s10853-022-07028-8

    Article  CAS  Google Scholar 

  5. Vijayapradeep S, Logeshwaran N, Ramakrishnan S et al (2023) Chem Eng J 473:145348. https://doi.org/10.1016/j.cej.2023.145348

    Article  CAS  Google Scholar 

  6. Poudel MB, Logeshwaran N, Kim AR, Vijayapradeep S, Yoo DJ (2023) J Alloys Compd 960:170678. https://doi.org/10.1016/j.jallcom.2023.170678

    Article  CAS  Google Scholar 

  7. Huang J, Sementa L, Liu Z et al (2022) Nat Catal 5:513. https://doi.org/10.1038/s41929-022-00797-0

    Article  CAS  Google Scholar 

  8. Byeon A, Yun WC, Kim JM, Lee JW (2023). Chem Eng J. https://doi.org/10.1016/j.cej.2022.141042

    Article  Google Scholar 

  9. Wang L, Wang Y (2021) J Mater Sci 56:19589. https://doi.org/10.1007/s10853-021-06488-8

    Article  CAS  Google Scholar 

  10. Wang M, Li Y, Han J (2020) J Mater Sci 55:11177. https://doi.org/10.1007/s10853-020-04772-7

    Article  CAS  Google Scholar 

  11. Li J, Tang Y, Wang H et al (2022) Int J Hydrogen Energy 47:9905. https://doi.org/10.1016/j.ijhydene.2022.01.067

    Article  CAS  Google Scholar 

  12. Zhou Y, Yu Y, Ma D et al (2020) ACS Catal 11:74. https://doi.org/10.1021/acscatal.0c03496

    Article  CAS  Google Scholar 

  13. Wolker T, Brunnengräber K, Martinaiou I et al (2022) J Energy Chem 68:324. https://doi.org/10.1016/j.jechem.2021.11.042

    Article  CAS  Google Scholar 

  14. Li J, Chen J, Wan H et al (2019) Appl Catal B 242:209. https://doi.org/10.1016/j.apcatb.2018.09.044

    Article  CAS  Google Scholar 

  15. Li J, Chen J, Wang H et al (2017) Energy Storage Mater 8:49. https://doi.org/10.1016/j.ensm.2017.03.007

    Article  Google Scholar 

  16. Li D, Han Z, Leng K, Ma S, Wang Y, Bai J (2021) J Mater Sci 56:12764. https://doi.org/10.1007/s10853-021-06122-7

    Article  CAS  Google Scholar 

  17. Zhan X, Jin Y, Gao Z et al (2022) J Mater Sci 57:15943. https://doi.org/10.1007/s10853-022-07647-1

    Article  CAS  Google Scholar 

  18. Zhao J, Sun S, Li Y et al (2023) J Mater Sci 58:17188. https://doi.org/10.1007/s10853-023-09098-8

    Article  CAS  Google Scholar 

  19. Zhu Z, Han J, Cui J et al (2021) J Mater Sci 56:8143. https://doi.org/10.1007/s10853-021-05806-4

    Article  CAS  Google Scholar 

  20. Han J, Bian J, Sun C (2020). Res 2020. https://doi.org/10.34133/2020/9512763

    Article  Google Scholar 

  21. Hu L, Dai C, Chen L et al (2021) Angew Chem Int Ed 60:27324. https://doi.org/10.1002/anie.202113895

    Article  CAS  Google Scholar 

  22. Li S, Zhou X, Fang G et al (2020) ACS Appl Energy Mater 3:7710. https://doi.org/10.1021/acsaem.0c01121

    Article  CAS  Google Scholar 

  23. Kumar RS, Mannu P, Prabhakaran S et al (2023). Adv Sci. https://doi.org/10.1002/advs.202303525

    Article  Google Scholar 

  24. Ramakrishnan S, Balamurugan J, Vinothkannan M, Kim AR, Sengodan S, Yoo DJ (2020). Appl Catal B: Environ. https://doi.org/10.1016/j.apcatb.2020.119381

    Article  Google Scholar 

  25. Wang W, Wang X, Wang Y, Jiang B, Song H (2022). J Electrochem Soc. https://doi.org/10.1149/1945-7111/ac49cd

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhou Y, Lu R, Tao X et al (2023) J Am Chem Soc 145:3647. https://doi.org/10.1021/jacs.2c12933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Zhou Z, Liu K et al (2017) J Power Sources 343:30. https://doi.org/10.1016/j.jpowsour.2017.01.018

    Article  CAS  Google Scholar 

  28. Wu H, Li H, Zhao X et al (2016) Energy Environ Sci 9:3736. https://doi.org/10.1039/c6ee01867j

    Article  CAS  Google Scholar 

  29. Yu H, Fisher A, Cheng D, Cao D (2016) ACS Appl Mater Interfaces 8:21431. https://doi.org/10.1021/acsami.6b04189

    Article  CAS  PubMed  Google Scholar 

  30. Ma S, Han Z, Leng K et al (2020) Small 16:2001384. https://doi.org/10.1002/smll.202001384

    Article  CAS  Google Scholar 

  31. Wu W, Liu Y, Liu D et al (2020) Nano Res 14:998. https://doi.org/10.1007/s12274-020-3141-x

    Article  CAS  Google Scholar 

  32. Jahan M, Liu Z, Loh KP (2013) Adv Func Mater 23:5363. https://doi.org/10.1002/adfm.201300510

    Article  CAS  Google Scholar 

  33. Liu H, Jin Q, Meng L et al (2023) Nanoscale 15:13459. https://doi.org/10.1039/d3nr01810e

    Article  CAS  PubMed  Google Scholar 

  34. Du F, Li J, Wang C et al (2022). Chem Eng J. https://doi.org/10.1016/j.cej.2022.134641

    Article  Google Scholar 

  35. Li J, Liu H, Du F et al (2023). Chem Eng J. https://doi.org/10.1016/j.cej.2023.144488

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tian J, Liu D, Li J et al (2021) Chin Chem Lett 32:2427. https://doi.org/10.1016/j.cclet.2021.01.022

    Article  CAS  Google Scholar 

  37. Hao W, Su X, Lu S et al (2023). Small. https://doi.org/10.1002/smll.202302220

    Article  PubMed  Google Scholar 

  38. Lai Q, Zhu J, Zhao Y, Liang Y, He J, Chen J (2017) Small 13:1700740. https://doi.org/10.1002/smll.201700740

    Article  CAS  Google Scholar 

  39. Peles-Strahl L, Zion N, Lori O et al (2021). Adv Funct Mater. https://doi.org/10.1002/adfm.202100163

    Article  Google Scholar 

  40. Zhong HX, Wang J, Zhang YW et al (2014) Angew Chem Int Ed 53:14235. https://doi.org/10.1002/anie.201408990

    Article  CAS  Google Scholar 

  41. Kwak D-H, Han S-B, Lee Y-W et al (2017) Appl Catal B 203:889. https://doi.org/10.1016/j.apcatb.2016.10.084

    Article  CAS  Google Scholar 

  42. Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Angew Chem Int Ed 51:11496. https://doi.org/10.1002/anie.201206720

    Article  CAS  Google Scholar 

  43. Du X, Sun S, Ma G et al (2022) Int J Hydrogen Energy 47:6217. https://doi.org/10.1016/j.ijhydene.2021.11.215

    Article  CAS  Google Scholar 

  44. Jiang R, Chu D (2014) J Power Sources 245:352. https://doi.org/10.1016/j.jpowsour.2013.06.123

    Article  CAS  Google Scholar 

  45. Niu W-J, Sun Q-Q, He J-Z et al (2022) Chem Mater 34:4104. https://doi.org/10.1021/acs.chemmater.2c00350

    Article  CAS  Google Scholar 

  46. Hao R, Gu S, Hu J et al (2023) Carbon 20:9. https://doi.org/10.1016/j.carbon.2023.118031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from the Natural Science Foundation of Jiangsu Province (BK20200991), Suzhou Science and Technology Planning Project (SS202016), the USTS starting fund (No.332012104) and the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401). We are grateful to Central South University Laboratory for some of the experimental tests. Additionally, thanks for Pro. Tang Yougen and Pro. Wang Haiyan during writing and editing of this manuscript.

Funding

We would like to acknowledge the financial support from the Natural Science Foundation of Jiangsu Province (BK20200991), Suzhou Science and Technology Planning Project (SS202016), the USTS starting fund (No.332012104) and the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conception, experimental design, and manuscript composition. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Jingsha Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

Not applicable; the research is not on human or animal tissue.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, Y., Gu, Y. et al. Trace copper and bi-nonmetallic (N/S) modified ketjenblack (KB) as advanced electrocatalysts for oxygen reduction reactions. J Mater Sci 59, 9250–9264 (2024). https://doi.org/10.1007/s10853-024-09732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09732-z

Navigation