Skip to main content

Advertisement

Log in

Effect of graded microstructure on the modulus, hardness, and strength of hot-pressed ZrB2-B4C FGM

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A ZrB2-B4C functionally graded composite (FGM) tile with 100 mm diameter and 6 mm thickness with ZrB2 content varying from 70% in the top layer to 10% in the bottom layer was fabricated using vacuum hot pressing. The density of the fabricated FGM is ~ 35% lower than monolithic ZrB2. To the best of our knowledge, ultra high temperature ceramic FGMs of such large dimensions have never been reported in the published literature. The FGM showed a smooth compositional transition without defects in the interlayer regions. Young’s modulus of the FGM and its individual layers was determined using non-destructive ultrasound phase spectroscopy and overall Young’s modulus of the FGM was correlated to the volume fraction averaged weighted sum of Young’s modulus of each layer. The good interparticle bonding and lack of residual porosity in the top and middle layers resulted in high hardness and excellent wear resistance. The flexural strength of the FGM is approx. 400 MPa and the fracture mode displays a transition with composition along the thickness direction. Even under flexural loading, the interlayer regions remain intact, rendering excellent structural stability to the FGM. The fracture mechanism of the FGM has been discussed in light of the processing-induced thermal residual stress present in each layer and the presence of residual porosity and compositional gradient. The combination of low density, smooth interlayer transition, high flexural strength, as well as excellent hardness and wear resistance at the top layer renders the developed FGM potentially very attractive for thermal protection applications in hypersonic aircraft and re-entry vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Nisar A, Hassan R, Agarwal A, Balani K (2022) Ultra-high temperature ceramics: aspiration to overcome challenges in thermal protection systems. Ceram Int 48:8852–8881. https://doi.org/10.1016/j.ceramint.2021.12.199

    Article  CAS  Google Scholar 

  2. Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15:804–809. https://doi.org/10.1038/nmat4687

    Article  CAS  PubMed  Google Scholar 

  3. Parthasarathy TA, Petry MD, Jefferson G, Cinibulk MK, Mathur T, Gruber MR (2011) Development of a test to evaluate aerothermal response of materials to hypersonic flow using a scramjet wind tunnel. Int J Appl Ceram Technol 8:832–847. https://doi.org/10.1111/j.1744-7402.2010.02515.x

    Article  CAS  Google Scholar 

  4. Golla BR, Mukhopadhyay A, Basu B, Thimmappa SK (2020) Review on ultra-high temperature boride ceramics. Prog Mater Sci 111:100651. https://doi.org/10.1016/j.pmatsci.2020.100651

    Article  CAS  Google Scholar 

  5. Justin JF, Jankowiak A (2011) Ultra high temperature ceramics: densification properties and thermal stability. AerospaceLab J 3:AL3-08

    Google Scholar 

  6. Venkateswaran T, Basu B, Raju GB, Kim DY (2006) Densification and properties of transition metal borides-based cermets via spark plasma sintering. J Eur Ceram Soc 26:2431–2440. https://doi.org/10.1016/j.jeurceramsoc.2005.05.011

    Article  CAS  Google Scholar 

  7. Esposito L, Bellosi A (2005) Joining ZrB2-SiC composites using glass interlayers. J Mater Sci 40:4445–4453. https://doi.org/10.1007/s10853-005-2813-y

    Article  CAS  Google Scholar 

  8. Inoue R, Arai Y, Kubota Y, Kogo Y, Goto K (2018) Oxidation of ZrB2 and its composites: a review. J Mater Sci 53:14885–14906. https://doi.org/10.1007/s10853-018-2601-0

    Article  CAS  Google Scholar 

  9. Bansal NP (2005) Handbook of ceramic composites. Springer Kluwer Academic Publishers, Boston/Dordrecht/London, pp 1–532

    Book  Google Scholar 

  10. Sengupta P, Basu S, Manna I (2021) Structure–property correlation in a novel ZrB2–SiC ultrahigh-temperature ceramic composite with Al-alloy sinter additive. J Mater Sci 56:19029–19046. https://doi.org/10.1007/s10853-021-06427-7

    Article  CAS  Google Scholar 

  11. Opila E, Levine S, Lorincz J (2004) Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effect of Ta additions. J Mater Sci 39:5969–5977. https://doi.org/10.1023/B:JMSC.0000041693.32531.d1

    Article  CAS  Google Scholar 

  12. Verma V, Cheverikin V, Câmara Cozza R (2020) Review: effect on physical, mechanical, and wear performance of ZrB2-based composites processed with or without additives. Int J Appl Ceram Technol 17:2509–2532. https://doi.org/10.1111/ijac.13567

    Article  CAS  Google Scholar 

  13. Cheng YH, Han WB, Liu DZ, An JD, Wang P, Zhao GD (2015) Spark plasma sintering of B4C-ZrB2 and B4C-ZrB2-SiC ceramics. Mater Res Innov 19:S1343–S1346. https://doi.org/10.1179/1432891715Z.0000000001501

    Article  CAS  Google Scholar 

  14. Moshtaghioun BM, Ortiz AL, Gómez-García D, Domínguez-Rodríguez A (2013) Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition. J Eur Ceram Soc 33:1395–1401. https://doi.org/10.1016/j.jeurceramsoc.2013.01.018

    Article  CAS  Google Scholar 

  15. Farahbakhsh I, Ahmadi Z, Shahedi Asl M (2017) Densification, microstructure and mechanical properties of hot pressed ZrB2–SiC ceramic doped with nano-sized carbon black. Ceram Int 43:8411–8417. https://doi.org/10.1016/j.ceramint.2017.03.188

    Article  CAS  Google Scholar 

  16. Mestvirishvili Z, Bairamashvili I, Kvatchadze V, Rekhviashvili N (2015) Thermal and mechanical properties of B4C-ZrB2 ceramic composite. J Mater Sci Eng B 5:2015. https://doi.org/10.17265/2161-6221/2015.9-10.007

    Article  CAS  Google Scholar 

  17. Huang SG, Vanmeensel K, Vleugels J (2014) Powder synthesis and densification of ultrafine B4C-ZrB2 composite by pulsed electrical current sintering. J Eur Ceram Soc 34:1923–1933. https://doi.org/10.1016/j.jeurceramsoc.2014.01.022

    Article  CAS  Google Scholar 

  18. Neuman EW, Hilmas GE, Fahrenholtz WG (2017) Processing, microstructure, and mechanical properties of zirconium diboride-boron carbide ceramics. Ceram Int 43:6942–6948. https://doi.org/10.1016/j.ceramint.2017.02.117

    Article  CAS  Google Scholar 

  19. Wenbo H, Jiaxing G, Jihong Z, Jiliang Y (2013) Microstructure and properties of B4C-Zrb2 ceramic composites. Int J Eng Innov Technol 3(163):166

    Google Scholar 

  20. He R, Jing L, Qu Z, Zhou Z, Ai S, Kai W (2015) Effects of ZrB2 contents on the mechanical properties and thermal shock resistance of B4C-ZrB2 ceramics. Mater Design 71:56–61. https://doi.org/10.1016/j.matdes.2015.01.002

    Article  CAS  Google Scholar 

  21. Hu P, Guolin W, Wang Z (2009) Oxidation mechanism and resistance of ZrB2–SiC composites. Corros Sci 51:2724–2732. https://doi.org/10.1016/j.corsci.2009.07.005

    Article  CAS  Google Scholar 

  22. Hu P, Wang Z (2010) Flexural strength and fracture behavior of ZrB2–SiC ultra-high temperature ceramic composites at 1800 °C. J Eur Ceram Soc 30:1021–1026. https://doi.org/10.1016/j.jeurceramsoc.2009.09.029

    Article  CAS  Google Scholar 

  23. Zhang SC, Hilmas GE, Fahrenholtz WG (2006) Pressureless densification of zirconium diboride with boron carbide additions. J Am Ceram Soc 89:1544–1550. https://doi.org/10.1111/j.1551-2916.2006.00949.x

    Article  CAS  Google Scholar 

  24. Zhu S, Fahrenholtz WG, Hilmas GE, Zhang SC, Yadlowsky EJ, Keitz MD (2008) Microwave sintering of a ZrB2-B4C particulate ceramic composite. Compos Part A Appl Sci Manuf 39:449–453. https://doi.org/10.1016/j.compositesa.2008.01.003

    Article  CAS  Google Scholar 

  25. Sciti D, Silvestroni L, Medri V, Monteverde F (2014) Sintering and Densification Mechanisms of Ultra‐High Temperature Ceramics. In: Fahrenholtz WG, Wuchina EJ, Lee WE, Zhou Y (eds) Ultra‐High Temperature Ceramics: Materials for Extreme Environment Applications. Wiley, pp 112–143. https://doi.org/10.1002/9781118700853.ch6

    Chapter  Google Scholar 

  26. Fahrenholtz WG, Hilmas GE, Zhang SC, Zhu S (2008) Pressureless sintering of zirconium diboride: particle size and additive effects. J Am Ceram Soc 91:1398–1404. https://doi.org/10.1111/j.1551-2916.2007.02169.x

    Article  CAS  Google Scholar 

  27. Chakraborty S, Debnath D, Mallick AR, Das PK (2015) Mechanical, tribological, and thermal properties of hot-pressed ZrB2-B4C composite. Int J Appl Ceram Technol 12:568–576. https://doi.org/10.1111/ijac.12290

    Article  CAS  Google Scholar 

  28. Sai Charan M, Naik AK, Kota N, Laha T, Roy S (2022) Review on developments of bulk functionally graded composite materials. Int Mater Rev 67:797–863. https://doi.org/10.1080/09506608.2022.2026863

    Article  CAS  Google Scholar 

  29. Naik AK, Nazeer M, Prasad DKVD, Laha T, Roy S (2022) Development of functionally graded ZrB2–B4C composites for lightweight ultrahigh-temperature aerospace applications. Ceram Int 48:33332–33339. https://doi.org/10.1016/j.ceramint.2022.07.276

    Article  CAS  Google Scholar 

  30. Oza MJ, Schell KG, Bucharsky EC, Laha T, Roy S (2021) Developing a hybrid Al–SiC-graphite functionally graded composite material for optimum composition and mechanical properties. Mater Sci Eng A 805:140625. https://doi.org/10.1016/j.msea.2020.140625

    Article  CAS  Google Scholar 

  31. Pietrzak K, Kaliński D, Chmielewski M (2007) Interlayer of Al2O3–Cr functionally graded material for reduction of thermal stresses in alumina–heat resisting steel joints. J Eur Ceram Soc 27:1281–1286. https://doi.org/10.1016/j.jeurceramsoc.2006.04.102

    Article  CAS  Google Scholar 

  32. Birman V, Byrd LW (2007) Modeling and analysis of functionally graded materials and structures. Appl Mech Rev 60:195–216. https://doi.org/10.1115/1.2777164

    Article  Google Scholar 

  33. Rouf S, Malik A, Raina A, Irfan Ul Haq M, Naveed N, Zolfagharian A, Bodaghi M (2022) Functionally graded additive manufacturing for orthopedic applications. J Orthop 33:70–80. https://doi.org/10.1016/j.jor.2022.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maciejewski G, Mróz Z (2013) Optimization of functionally gradient materials in valve design under cyclic thermal and mechanical loading. Comput Assist Methods Eng Sci 20:99–112

    Google Scholar 

  35. Schwarzer E, Holtzhausen S, Scheithauer U, Ortmann C, Oberbach T, Moritz T, Michaelis A (2019) Process development for additive manufacturing of functionally graded alumina toughened zirconia components intended for medical implant application. J Eur Ceram Soc 39:522–530. https://doi.org/10.1016/j.jeurceramsoc.2018.09.003

    Article  CAS  Google Scholar 

  36. Zhang C, Chen F, Huang Z, Jia M, Chen G, Ye Y, Lin Y, Liu W, Chen B, Shen Q, Zhang L, Lavernia EJ (2019) Additive manufacturing of functionally graded materials: a review. Mater Sci Eng A 764:138209. https://doi.org/10.1016/j.msea.2019.138209

    Article  CAS  Google Scholar 

  37. Neuman EW, Thompson M, Fahrenholtz WG, Hilmas GE (2022) Elevated temperature thermal properties of ZrB2-B4C ceramics. J Eur Ceram Soc 42:4024–4029. https://doi.org/10.1016/j.jeurceramsoc.2022.03.029

    Article  CAS  Google Scholar 

  38. He R, Jing L, Qu Z, Zhou Z, Ai S, Kai W (2015) Effects of ZrB2 contents on the mechanical properties and thermal shock resistance of B4C-ZrB2 ceramics. Mater Des 71:56–61. https://doi.org/10.1016/j.matdes.2015.01.002

    Article  CAS  Google Scholar 

  39. Le TD, Hirota K, Kato M, Miyamoto H, Yuasa M, Nishimura T (2020) Fabrication of dense ZrB2/B4C composites using pulsed electric current pressure sintering and evaluation of their high-temperature bending strength. Ceram Int 46:18478–18486. https://doi.org/10.1016/j.ceramint.2020.04.153

    Article  CAS  Google Scholar 

  40. ASTM C20–00 (2015) Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. Am Soc Test Mater. 00: 1–3. https://doi.org/10.1520/C0020-00R10.2

  41. Naik AK, Maharana S, Bichler L, Laha T, Roy S (2023) Study of the influence of ZrB2 content and thermal shock on the elastic modulus of spark plasma sintered ZrB2-B4C composites using a non-destructive ultrasonic technique. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2023.09.065

    Article  Google Scholar 

  42. Roy S, Gebert JM, Stasiuk G, Piat R, Weidenmann KA, Wanner A (2011) Complete determination of elastic moduli of interpenetrating metal/ceramic composites using ultrasonic techniques and micromechanical modelling. Mater Sci Eng A 528:8226–8235. https://doi.org/10.1016/j.msea.2011.07.029

    Article  CAS  Google Scholar 

  43. Jana P, Ray S, Goldar D, Kota N, Kar SK, Roy S (2022) Study of the elastic properties of porous copper fabricated via the lost carbonate sintering process. Mater Sci Eng A 836:142713. https://doi.org/10.1016/j.msea.2022.142713

    Article  CAS  Google Scholar 

  44. Roy S, Stoll O, Weidenmann KA, Nagel A, Wanner A (2011) Analysis of the elastic properties of an interpenetrating AlSi12-Al2O3 composite using ultrasound phase spectroscopy. Compos Sci Technol 71:962–968. https://doi.org/10.1016/j.compscitech.2011.02.014

    Article  CAS  Google Scholar 

  45. Roy S, Wanner A (2008) Metal/ceramic composites from freeze-cast ceramic preforms: domain structure and elastic properties. Compos Sci Technol 68:1136–1143. https://doi.org/10.1016/j.compscitech.2007.06.013

    Article  CAS  Google Scholar 

  46. Roy S, Nagel A, Weidenmann KA (2020) Anisotropic thermal expansion behavior of an interpenetrating metal/ceramic composite. Thermochim Acta 684:178488. https://doi.org/10.1016/j.tca.2019.178488

    Article  CAS  Google Scholar 

  47. Roy S, Schell KG, Bucharsky EC, Hettich P, Dietrich S, Weidenmann KA, Wanner A, Hoffmann MJ (2012) Processing and elastic property characterization of porous SiC preform for interpenetrating metal/ceramic composites. J Am Ceram Soc 95:3078–3083. https://doi.org/10.1111/j.1551-2916.2012.05347.x

    Article  CAS  Google Scholar 

  48. Nazeer M, Jana P, Oza MJ, Bucharsky EC, Laha T, Roy S (2022) Ultrasonic study of the elastic properties of functionally graded and equivalent monolithic composites. Mater Lett. https://doi.org/10.1016/j.matlet.2022.132594

    Article  Google Scholar 

  49. Chamberlain AL, Fahrenholtz WG, Hilmas GE (2004) High-strength zirconium diboride-based ceramics. J Am Ceram Soc 1172:1170–1172

    Article  Google Scholar 

  50. Asl MS, Kakroudi MG, Noori S (2015) Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure. J Alloys Compd 619:481–487. https://doi.org/10.1016/j.jallcom.2014.09.006

    Article  CAS  Google Scholar 

  51. Aguirre TG, Cramer CL, Cakmak E, Lance MJ, Lowden RA (2021) Processing and microstructure of ZrB2–SiC composite prepared by reactive spark plasma sintering. Results Mater 11:100217. https://doi.org/10.1016/j.rinma.2021.100217

    Article  CAS  Google Scholar 

  52. Krishnarao RV (2017) Preparation of ZrB2 and ZrB2-SiC powders in a single step reduction of zircon (ZrSiO4) with B4C. Ceram Int 43:1205–1209. https://doi.org/10.1016/j.ceramint.2016.10.064

    Article  CAS  Google Scholar 

  53. Rehman SS, Ji W, Fu Z, Wang W, Wang H, Asif M, Zhang J (2015) In situ synthesis and sintering of B4C/ZrB2 composites from B4C and ZrH2 mixtures by spark plasma sintering. J Eur Ceram Soc 35:1139–1145. https://doi.org/10.1016/j.jeurceramsoc.2014.10.013

    Article  CAS  Google Scholar 

  54. Levin L, Frage N, Dariel MP (2000) A novel approach for the preparation of B4C-based cermets. Int J Refract Met Hard Mater 18:131–135. https://doi.org/10.1016/S0263-4368(00)00012-3

    Article  CAS  Google Scholar 

  55. Xu C, Cai Y, Flodström K, Li Z, Esmaeilzadeh S, Zhang G-J (2012) Spark plasma sintering of B4C ceramics: the effects of milling medium and TiB2 addition. Int J Refract Met Hard Mater 30:139–144. https://doi.org/10.1016/j.ijrmhm.2011.07.016

    Article  CAS  Google Scholar 

  56. Li P, Ma M, Wu Y, Zhang X, Chang Y, Zhuge Z, Sun L, Hu W, Yu D, Xu B, Zhao Z, Chen J, He J, Tian Y (2021) Preparation of dense B4C ceramics by spark plasma sintering of high-purity nanoparticles. J Eur Ceram Soc 41:3929–3936. https://doi.org/10.1016/j.jeurceramsoc.2021.02.036

    Article  CAS  Google Scholar 

  57. Shahedi Asl M, Ghassemi Kakroudi M, Nayebi B (2015) A fractographical approach to the sintering process in porous ZrB2-B4C binary composites. Ceram Int 41:379–387. https://doi.org/10.1016/j.ceramint.2014.08.081

    Article  CAS  Google Scholar 

  58. Mashhadi M, Taheri-Nassaj E, Sglavo VM, Sarpoolaky H, Ehsani N (2009) Effect of Al addition on pressureless sintering of B4C. Ceram Int 35:831–837. https://doi.org/10.1016/j.ceramint.2008.03.003

    Article  CAS  Google Scholar 

  59. Rehman SS, Ji W, Khan SA, Fu Z, Zhang F (2015) Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aid. Ceram Int 41:1903–1906. https://doi.org/10.1016/j.ceramint.2014.09.115

    Article  CAS  Google Scholar 

  60. Mizrahi I, Raviv A, Dilman H, Aizenshtein M, Dariel MP, Frage N (2007) The effect of Fe addition on processing and mechanical properties of reaction infiltrated boron carbide-based composites. J Mater Sci 42:6923–6928. https://doi.org/10.1007/s10853-006-1304-0

    Article  CAS  Google Scholar 

  61. Xie KY, Toksoy MF, Kuwelkar K, Zhang B, Krogstad JA, Haber RA, Hemker KJ (2014) Effect of alumina on the structure and mechanical properties of spark plasma sintered boron carbide. J Am Ceram Soc 97:3710–3718. https://doi.org/10.1111/jace.13178

    Article  CAS  Google Scholar 

  62. Cavaliere P (ed) (2019) Spark plasma sintering of materials: advances in processing and applications. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-05327-7

    Book  Google Scholar 

  63. Grasso S, Sakka Y, Maizza G (2009) Pressure effects on temperature distribution during spark plasma sintering with graphite sample. Mater Trans 50:2111–2114. https://doi.org/10.2320/matertrans.M2009148

    Article  CAS  Google Scholar 

  64. Kashyap SK, Mitra R (2019) Effect of LaB6 additions on densification, microstructure, and creep with oxide scale formation in ZrB2-SiC composites sintered by spark plasma sintering. J Eur Ceram Soc 39:2782–2793. https://doi.org/10.1016/j.jeurceramsoc.2019.03.043

    Article  CAS  Google Scholar 

  65. Mohammad Bagheri S, Vajdi M, Sadegh Moghanlou F, Sakkaki M, Mohammadi M, Shokouhimehr M, Shahedi Asl M (2020) Numerical modeling of heat transfer during spark plasma sintering of titanium carbide. Ceram Int 46:7615–7624. https://doi.org/10.1016/j.ceramint.2019.11.262

    Article  CAS  Google Scholar 

  66. Tiwari D, Basu B, Biswas K (2009) Simulation of thermal and electric field evolution during spark plasma sintering. Ceram Int 35:699–708. https://doi.org/10.1016/j.ceramint.2008.02.013

    Article  CAS  Google Scholar 

  67. Diatta J, Antou G, Pradeilles N, Maître A (2017) Numerical modeling of spark plasma sintering—discussion on densification mechanism identification and generated porosity gradients. J Eur Ceram Soc 37:4849–4860. https://doi.org/10.1016/j.jeurceramsoc.2017.06.052

    Article  CAS  Google Scholar 

  68. Wang J, Long F, Wang W, Mo S, Zou Z, Fu Z (2016) Reaction coupling preparation of high sintering activity boron carbide nano-powders. Ceram Int 4:6969–6977. https://doi.org/10.1016/j.ceramint.2016.01.083

    Article  CAS  Google Scholar 

  69. Madhav Reddy K, Guo JJ, Shinoda Y, Fujita T, Hirata A, Singh JP, McCauley JW, Chen MW (2012) Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases. Nat Commun 3:1052. https://doi.org/10.1038/ncomms2047

    Article  CAS  PubMed  Google Scholar 

  70. He R, Zhou Z, Qu Z, Cheng X (2016) High temperature flexural strength and oxidation behavior of hot-pressed B4C–ZrB2 ceramics with various ZrB2 contents at 1000–1600°C in air. Int. J. Refract. Met. Hard Mater. 57:125–133. https://doi.org/10.1016/j.ijrmhm.2016.03.005

    Article  CAS  Google Scholar 

  71. Haggerty RP, Sarin P, Apostolov ZD, Driemeyer PE, Kriven WM (2014) Thermal expansion of HfO2 and ZrO2. J Am Ceram Soc 97:2213–2222. https://doi.org/10.1111/jace.12975

    Article  CAS  Google Scholar 

  72. Keihn FG, Keplin EJ (1967) High-temperature thermal expansion of certain group IV and group V diborides. J Am Ceram Soc 50:81–84. https://doi.org/10.1111/j.1151-2916.1967.tb15044.x

    Article  CAS  Google Scholar 

  73. Tsagareishvili GV, Nakashidze TG, Jobava JS, Lomidze GP, Khulelidze DE, Tsagareishvili DS, Tsagareishvili OA (1986) Thermal expansion of boron and boron carbide. J Less Common Met 117:159–161. https://doi.org/10.1016/0022-5088(86)90025-1

    Article  CAS  Google Scholar 

  74. Deng Z-Y, Ferreira JMF, Tanaka Y, Isoda Y (2007) Microstructure and thermal conductivity of porous ZrO2 ceramics. Acta Mater 55:3663–3669. https://doi.org/10.1016/j.actamat.2007.02.014

    Article  CAS  Google Scholar 

  75. Medveď D, Balko J, Sedlák R, Kovalčíková A, Shepa I, Naughton-Duszová A, Bączek E, Podsiadło M, Dusza J (2019) Wear resistance of ZrB2 based ceramic composites. Int J Refract Met Hard Mater 81:214–224. https://doi.org/10.1016/j.ijrmhm.2019.03.0044

    Article  Google Scholar 

  76. Sengupta P, Basu S, Manna I (2023) Comparative evaluation of TiC and/or WC addition on microstructure, mechanical properties, thermal residual stress and reciprocating wear behaviour of ZrB2–20SiC composites. J Mater Sci 58:420–442. https://doi.org/10.1007/s10853-022-08021-x

    Article  CAS  Google Scholar 

  77. Ghosh D, Subhash G, Orlovskaya N (2008) Measurement of scratch-induced residual stress within SiC grains in ZrB2-SiC composite using micro-Raman spectroscopy. Acta Mater 56:5345–5354. https://doi.org/10.1016/j.actamat.2008.07.031

    Article  CAS  Google Scholar 

  78. Watts J, Hilmas G, Fahrenholtz WG, Brown D, Clausen B (2011) Measurement of thermal residual stresses in ZrB2-SiC composites. J Eur Ceram Soc 31:1811–1820. https://doi.org/10.1016/j.jeurceramsoc.2011.03.024

    Article  CAS  Google Scholar 

  79. Taya M, Hayashi S, Kobayashi AS, Yoon HS (1990) Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J Am Ceram Soc 73:1382–1391. https://doi.org/10.1111/j.1151-2916.1990.tb05209.x

    Article  CAS  Google Scholar 

  80. Lugovy M, Slyunyayev V, Orlovskaya N, Mitrentsis E, Aneziris CG, Graule T, Kuebler J (2016) Temperature dependence of elastic properties of ZrB2–SiC composites. Ceram Int 42:2439–2445. https://doi.org/10.1016/j.ceramint.2015.10.044

    Article  CAS  Google Scholar 

  81. Kuliiev R (2020) Mechanical properties of boron carbide (B4C). pp 1–80. https://purls.library.ucf.edu/go/DP0023265

  82. Ravichandran KS (1995) Thermal residual stresses in a functionally graded material system. Mater Sci Eng A 201:269–276. https://doi.org/10.1016/0921-5093(95)09773-2

    Article  Google Scholar 

  83. Sharma A, Karunakar DB (2022) Influence of TiC addition on ablation and thermal shock behaviour of microwave sintered ZrB2–SiC–TiC composites. Ceram Int 48:34504–34515. https://doi.org/10.1016/j.ceramint.2022.08.031

    Article  CAS  Google Scholar 

  84. Wei C, Zhang X, Hu P, Han W, Tian G (2011) The fabrication and mechanical properties of bionic laminated ZrB2–SiC/BN ceramic prepared by tape casting and hot pressing. Scr Mater 65:791–794. https://doi.org/10.1016/j.scriptamat.2011.07.0314

    Article  CAS  Google Scholar 

  85. Wei C, Liu X, Niu J, Feng L, Yue H (2016) High temperature mechanical properties of laminated ZrB2–SiC based ceramics. Ceram Int 42:18148–18153. https://doi.org/10.1016/j.ceramint.2016.08.129

    Article  CAS  Google Scholar 

  86. Zhang L, Wei C, Li S, Wen G, Liu Y, Wang P (2019) Mechanical and thermal shock properties of laminated ZrB2-SiC/SiCw ceramics. Ceram Int 45:6503–6508. https://doi.org/10.1016/j.ceramint.2018.12.140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Material and Manufacturing Panel of Aeronautics R&D Board (ARDB), Govt. of India for the research funding with the project no.1977. The authors extend their appreciation to Mr. Nilesh Thakre (technical officer) and Mr. Vinod kumar Patle (technician) for their invaluable assistance with the hot-pressing process. AKN would like to thank “Mitacs Globalink Research Award to Canada” for funding his stay at UBCO, Canada with the Application Ref.: IT33806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Roy.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, A.K., Pillari, L.K., Patel, M. et al. Effect of graded microstructure on the modulus, hardness, and strength of hot-pressed ZrB2-B4C FGM. J Mater Sci 59, 8682–8705 (2024). https://doi.org/10.1007/s10853-024-09720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09720-3

Navigation