Skip to main content
Log in

Synthesis of polyvinylpyrrolidone-protected silver nanoclusters with strong fluorescence for highly sensitive and selective hexavalent chromium ion detection

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyvinylpyrrolidone (PVP)-protected and strongly luminescent silver nanoclusters (AgNCs@PVP) were synthesized by hydrothermal synthesis under the reduction of formaldehyde aqueous solution. The effects of the concentration ratio of reactants, reaction temperature, reaction time, and pH of the reaction system on the AgNCs@PVP synthesis process were investigated. The luminescent properties, structure, and morphology were characterized. On the basis of the change in AgNCs@PVP fluorescence spectrum caused by hexavalent chromium ion, a method for detecting hexavalent chromium ion was established. Results show a good linear relationship between the concentration of hexavalent chromium ion and the intensity of AgNCs@PVP fluorescence emission spectrum, and the linear range is 2–340 μM. The minimum detection limit is 0.2039 nM, and it was applied to the detection of hexavalent chromium ion in actual water samples. Considering ascorbic acid (AA) can recover the fluorescence quenching of AgNCs@PVP, an “on–off–on” switch was established, and the interaction mechanism of this system was studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Korshoj LE, Zaitouna AJ, Lai RY (2015) Methylene blue-mediated electrocatalytic detection of hexavalent chromium. Anal Chem 87(5):2560–2564

    Article  CAS  PubMed  Google Scholar 

  2. Castilleja-Rivera WL, Hinojosa-Reyes L, Guzmán-Mar JL, Hernández-Ramírez A, Ruíz-Ruíz E, Cerdà V (2012) Sensitive determination of chromium (VI) in paint samples using a membrane optode coupled to a multisyringe flow injection system. Talanta 99:730–736

    Article  CAS  PubMed  Google Scholar 

  3. Cao XL, Bai YG, Li F, Liu FX (2021) “Turn-off” fluorescent strategy for determination of hexavalent chromium ions based on copper nanoclusters. Luminescence 36(1):229–236

    Article  CAS  PubMed  Google Scholar 

  4. Yilmaz E, Soylak M (2016) Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples. Talanta 160:680–685. https://doi.org/10.1016/j.talanta.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  5. Jin W, Wu GS, Chen AC (2014) Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticledecorated titania nanotube arrays. Analyst 139:235–241. https://doi.org/10.1039/C3AN01614E

    Article  CAS  PubMed  Google Scholar 

  6. Wang HJ, Du XM, Wang M, Wang TC, Hong OY, Wang B, Zhu MT, Wang Y, Jia G, Feng WY (2010) Usingion-pairreversed-phase HPLC ICP-MS to simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers. Talanta 81(4–5):1856–1860

    Article  CAS  PubMed  Google Scholar 

  7. Zhang XH, Liu W, Li XM, Zhen DL, Shan H, Xia ST, Lu XQ (2018) Ultrahigh selective colorimetric quantification of chromium(VI) ions based on gold amalgam catalyst oxidoreductase-like activity in water. Anal Chem 90:14309–14315

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Wei T, Ren GJ, Chai F, Wu HB (2017) Gold nanoparticles based colorimetric probe for Cr(III) and Cr(VI) detection. Colloid Surface A 535:215–224. https://doi.org/10.1016/j.colsurfa.2017.09.028

    Article  CAS  Google Scholar 

  9. Tan LL, Chen ZB, Zhao Y, Wei XC, Li YH, Zhang C, Wei XL, Hu XC (2016) Dual channel sensor for detection and discrimination of heavy metal ions based on colorimetric and fluorescence response of the AuNPs-DNA conjugates. Biosens Bioelectron 85:414–421

    Article  CAS  PubMed  Google Scholar 

  10. Zhang JF, Li SL (2019) Sensors for detection of Cr(VI) in water: a review. Int J Environ An Chem. https://doi.org/10.1080/03067319.2019.1675652

    Article  Google Scholar 

  11. Wang N, Wang LC, Yang H, Xiong TT, Xiao SP, Zhao JW, Du WP (2019) Fluorescent sensors based on organic polymer-capped gold nanoparticles for the detection of Cr(VI) in water. Int J Environ An Ch 2019:1–10

    CAS  Google Scholar 

  12. Cui M, Song G, Wang C, Song Q (2017) Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI). Microchim Acta 182:1371–1377

    Article  Google Scholar 

  13. Zhang H, Liu Q, Wang T, Yun Z, Li G, Liu J, Jiang G (2013) Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Anal Chim Acta 770:140–146

    Article  CAS  PubMed  Google Scholar 

  14. Lin YS, Chiu TC, Hu CC (2019) Fluorescence-tunable copper nanoclusters and their application in hexavalent chromium sensing. RSC Adv 9(16):9228–9234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xue QS, Li X, Peng YS, Liu P, Niu XH (2020) Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI). Microchim Acta 187(5):263–271

    Article  CAS  Google Scholar 

  16. Yang YL, Sun YF, Liao SZ, Wu ZY, Yu RQ (2016) Bimetallic gold–silver nanocluster fluorescent probes for Cr(III) and Cr(VI). Anal Method 8(39):7237–7241

    Article  CAS  Google Scholar 

  17. Yuan M, Li MX, Su PC, Yu L, Lu YF, Sun MT, Yuan C, Li MS, Wang SH (2023) Dual-responsive ratiometric fluorescent sensor for tetracyclines detection based on europium-decorated copper nanoclusters. Spectrochim Acta A 291(15):122384

    Article  CAS  Google Scholar 

  18. Zhou Y, Shi X, Ma L, Chai Y, Yuan R (2023) Thiol stabilized Au nanoclusters with efficient electrochemiluminescence for the simultaneous and ultrasensitive detection of GSH and Cu2+. Sens Actua B-Chem 382(1):133518

    Article  CAS  Google Scholar 

  19. Zhang YJ, Yang SQ, Wang J, Cai YY, Niu LX, Liu X, Liu CY, Qi H, Liu AH (2021) Copper sulfide nanoclusters with multi-enzyme-like activities and its application in acid phosphatase sensing based on enzymatic cascade reaction. Talanta 233:122594–122603. https://doi.org/10.1016/j.talanta.2021.122594

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Pan L, Wang Y, Yin L, Xu L, Tao J, Zhang L, Zhu Z, Cui D, Li F (2022) DNA-templated silver nanoclusters light up tryptophan for combined detection of plasma tryptophan and albumin in sepsis. Anal Chima Acta 1213:339925–339936

    Article  CAS  Google Scholar 

  21. Fan P, Qian X, Li Q, Jiang P, Wu Q, Huang G, Zhang Z, Li L (2023) A novel label-free dual-mode aptasensor based on the mutual regulation of silver nanoclusters and MoSe2 nanosheets for reliable detection of ampicillin. Anal Chim Acta 1251:340997–341007

    Article  CAS  PubMed  Google Scholar 

  22. Wang HH, Wei J, Fahime B, Farzaneh R, Su HF, Wang LX, Samia K, Jean-Franois H, Jean-Yves S, Ali M (2023) Monocarboxylate-protected two-electron superatomic silver nanoclusters with high photothermal conversion performance. Nanoscale 15(18):8245–8254

    Article  CAS  PubMed  Google Scholar 

  23. Latreche M, Willart JF, Paccou L, Guinet Y, Hédoux A (2020) Contribution of low-frequency Raman spectroscopy to determine the solubility curves of drugs in polymers: the case of paracetamol/PVP. Eur J Pharm Biopharm 154:222–227. https://doi.org/10.1016/j.ejpb.2020.07.012

    Article  CAS  PubMed  Google Scholar 

  24. Yin P, Xu MY, Liu W, Qu R, Liu X, Xu Q (2014) High efficient adsorption of gold ions onto the novel functional composite silica microspheres encapsulated by organophosphonated polystyrene. J Ind Eng Chem 20(2):379–390. https://doi.org/10.1016/j.jiec.2013.04.032

    Article  CAS  Google Scholar 

  25. Du J, Chen AB, Zhang Y, Zong S, Wu L (2020) PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors. J Mater Sci Technol 58(23):199–206

    Google Scholar 

  26. Hwang JS, Ko JU, Kim SH, Kang MH (2012) Preparation and characterization of solid dispersions of eprosartan with hydrophilic polymers. Polym Korea 36(4):500–506

    Article  CAS  Google Scholar 

  27. Khezri SH, Yazdani A, Khordad R (2014) Effect of characteristics of media on cobalt and iron nanoparticles prepared by arc discharge method. J Ind Eng Chem 20(2):521–527

    Article  Google Scholar 

  28. Shamsudin NH, Shafie S, Ab Kadir MZA, Ahmad F, Sadrolhosseini AR, Sulaiman Y, Abdullah AH, MohdChachuli SA (2022) Impact of polyvinylpyrrolidone and quantity of silver nitrate on silver nanoparticles sizing via solvothermal method for dye-sensitized solar cells. Surf Interface Anal 54(2):109–116

    Article  CAS  Google Scholar 

  29. Narjala RJ, Gaddam SA, Casimeer SC, Velakanti SG, Nadipi R, Batyala V, Suvarapu LN, Kotakadi VS (2022) Dual degradation of hexavalent chromium (VI) and cotton blue dye by reduced and PVP-capped silver nanoparticles using fruit extract of ficus carica. Nano Biomed Eng 14(2):123–135

    Article  CAS  Google Scholar 

  30. Wang M, Liu L, Xie X, Zhou X, Su X (2020) Single-atom iron containing nanozyme with peroxidase-like activity and copper nanoclusters based ratio fluorescent strategy for acetylcholinesterase activity sensing. Sens Actuat B-Chem 313(15):128023

    Article  CAS  Google Scholar 

  31. Hu X, Cao HY, Dong WF, Tang JS (2021) Ratiometric fluorescent sensing of ethanol based on copper nanoclusters with tunable dual emission. Talanta 233:122480

    Article  CAS  PubMed  Google Scholar 

  32. Tang Q, Yang TT, Huang YM (2015) Copper nanocluster-based fluorescent probe for hypochlorite. Microchim Acta 182:2337–2343

    Article  CAS  Google Scholar 

  33. Liu YY, Li HC, Guo B, Wei LJ, Chen B, Zhang YY (2017) Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron 91:734–740

    Article  CAS  PubMed  Google Scholar 

  34. Santiago González B, Rodrίguez MJ, Blanco C, Rivas J, López-Quintela MA, Martinho JMG (2010) One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett 10:4217–4221

    Article  PubMed  Google Scholar 

  35. Misra N, Kumar V, Borde L, Varshney L (2013) Localized surface plasmon resonance-optical sensors based on radiolytically synthesized silver nanoparticles for estimation of uric acid. Sens Actuat B-Chem 178:371–378

    Article  CAS  Google Scholar 

  36. Luo WJ, Zhu YX, Zhang JY, He JJ, Chi GZ, Miller PW, Chen LP, Su CY (2014) A dynamic covalent imine gel as a luminescent sensor. Chem Commun 50(80):11942–11945

    Article  CAS  Google Scholar 

  37. Ju B, Wang Y, Zhang YM, Zhang T, Liu ZH, Li MJ, Zhang SX (2018) Photostable and low toxic yellow green carbon dots for highly selective detection of explosive 2,4,6-trinitrophenol based on the dual electron transfer mechanism. ACS Appl Mater Interface 10(15):13040–13047

    Article  CAS  Google Scholar 

  38. Zhang L, Zhu J, Guo S, Li T, Li J, Wang E (2013) Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors. J Am Chem Soc 135(7):2403–2406

    Article  CAS  PubMed  Google Scholar 

  39. He SZ, Lin X, Liang H, Xiao F, Li F, Liu C, Fan P, Yang S, Liu Y (2019) Colorimetric detection of Cr(VI) using silver nanoparticles functionalized with PVP. Anal methods 11(45):5819–5825. https://doi.org/10.1039/C9AY02010A

    Article  CAS  Google Scholar 

  40. Zhang XH, Liu W, Li XM, Zhang Z, Shan DL, Xia H, Zhang ST, Lu XQ (2018) Ultrahigh selective colorimetric quantification of chromium(VI) ions based on gold amalgam catalyst oxidoreductase-like activity in water. Anal Chem 90:14309–14315. https://doi.org/10.1021/acs.analchem.8b03597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was sponsored by the Scientific Research Projects of Colleges and Universities in Hainan Province (Nos. Hnky-2022ZD-19), the Hainan Provincial Natural Science Foundation of China (Nos. 222QN333), Hainan Province Science and Technology Special Fund (Nos. ZDYF2023GXJS001), and the projects of National Natural Science Foundation of China (Nos. 22266028)

Author information

Authors and Affiliations

Authors

Contributions

XueLing Cao contributed to conceptualization and methodology; YaGeng Bai helped in data curation, software, and validation. Ge Yu helped in writing—original draft preparation. Tingting Zheng helped in visualization, investigation, and formal analysis. Danfeng He helped in writing—reviewing and editing and funding acquisition.

Corresponding authors

Correspondence to Xueling Cao or Danfeng He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

The supplementary information includes the optimization of the preparation conditions of silver nanoclusters, TEM of AgNCs@PVP and SEM mapping of elements Ag, O and C at low resolution, effects of pH and storage temperature on the fluorescence stability of AgNCs@PVP, quenching and recovery cycle of AgNCs@PVP-hexavalent chromium ions-AA system.

Ethical approval

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Bai, Y., Yu, G. et al. Synthesis of polyvinylpyrrolidone-protected silver nanoclusters with strong fluorescence for highly sensitive and selective hexavalent chromium ion detection. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09701-6

Navigation