Skip to main content
Log in

Flower-like Fe0-Fe3O4@MoS2 hollow spheres activate peroxymonosulfate for the degradation of tetracycline hydrochloride

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of flower-like Fe0-Fe3O4@MoS2 composite catalysts were successfully synthesized by reducing Fe0 on the surface of Fe3O4 hollow spheres and coating with MoS2 to activate peroxomonosulfate (PMS) for tetracycline hydrochloride (TC) degradation. Adding Fe0 increased the Fe2+ content, and the surface-coated 1T/2H mixed phase MoS2 enhanced the redox cycle of Fe (II)/Fe (III) and the reactivity of the heterogeneous system. Subsequently, the quenching experiments showed that radical and non-radical pathways were present in the Fe0-Fe3O4@MoS2/PMS system, and O2· and 1O2 were dominant in the degradation. Moreover, the experimental results demonstrated that Fe0-Fe3O4@MoS2 exhibited excellent degradation efficiency (96.81%) and anti-interference capability against anions and humic acid. On this basis, the reaction mechanism was analyzed, and three possible degradation pathways were proposed by LC–MS to detect intermediates of TC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data and code availability

All data are available to readers.

References

  1. Singh R, Singh AP, Kumar S, Giri BS, Kim K-H (2019) Antibiotic resistance in major rivers in the world: a systematic review on occurrence, emergence, and management strategies. J Clean Prod 234:1484–1505. https://doi.org/10.1016/j.jclepro.2019.06.243

    Article  CAS  Google Scholar 

  2. Zhu S, Qin L, Li Z, Hu X, Yin D (2023) Effects of nanoplastics and microplastics on the availability of pharmaceuticals and personal care products in aqueous environment. J Hazard Mater 458:131999. https://doi.org/10.1016/j.jhazmat.2023.131999

    Article  CAS  PubMed  Google Scholar 

  3. Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK (2020) Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere 251:126351. https://doi.org/10.1016/j.chemosphere.2020.126351

    Article  CAS  PubMed  Google Scholar 

  4. Shen Q, Wang Z, Yu Q, Cheng Y, Liu Z, Zhang T, Zhou S (2020) Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues. Environ Res 183:109195. https://doi.org/10.1016/j.envres.2020.109195

    Article  CAS  PubMed  Google Scholar 

  5. Selvamani PS, Vijaya JJ, Kennedy LJ, Mustafa A, Bououdina M, Sophia PJ, Ramalingam RJ (2021) Synergic effect of Cu2O/MoS2/rGO for the sonophotocatalytic degradation of tetracycline and ciprofloxacin antibiotics. Ceram Int 47:4226–4237. https://doi.org/10.1016/j.ceramint.2020.09.301

    Article  CAS  Google Scholar 

  6. Leichtweis J, Vieira Y, Welter N, Silvestri S, Dotto GL, Carissimi E (2022) A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Process Saf Environ Prot 160:25–40. https://doi.org/10.1016/j.psep.2022.01.085

    Article  CAS  Google Scholar 

  7. Li J, Cao H, Qi H et al (2023) Efficiently activating peroxymonosulfate by CoFe-LDHs/MoS2 for rapid degradation of tetracycline. J Water Process Eng 53:103856. https://doi.org/10.1016/j.jwpe.2023.103856

    Article  Google Scholar 

  8. Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G (2021) Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci Total Environ 753:141975. https://doi.org/10.1016/j.scitotenv.2020.141975

    Article  CAS  PubMed  Google Scholar 

  9. Ye Z-X, Shao K-L, Huang H, Yang X (2021) Tetracycline antibiotics as precursors of dichloroacetamide and other disinfection byproducts during chlorination and chloramination. Chemosphere 270:128628. https://doi.org/10.1016/j.chemosphere.2020.128628

    Article  CAS  PubMed  Google Scholar 

  10. Sultan I, Siddiqui MT, Gogry FA, Mohd Q, Haq R (2022) Molecular characterization of resistance determinants and mobile genetic elements of ESBL producing multidrug-resistant bacteria from freshwater lakes in Kashmir, India. Sci Total Environ 827:154221. https://doi.org/10.1016/j.scitotenv.2022.154221

    Article  CAS  PubMed  Google Scholar 

  11. Cai C, Huang X, Dai X (2022) Differential variations of intracellular and extracellular antibiotic resistance genes between treatment units in centralized sewage sludge treatment plants. Water Res 222:118893. https://doi.org/10.1016/j.watres.2022.118893

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Zhang C, Xiong L, Song G, Liu F (2022) Changes of antibiotic occurrence and hydrochemistry in groundwater under the influence of the South-to-North Water Diversion (the Hutuo River, China). Sci Total Environ 832:154779. https://doi.org/10.1016/j.scitotenv.2022.154779

    Article  CAS  PubMed  Google Scholar 

  13. Wang S, Wang J (2019) Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chem Eng J 356:350–358. https://doi.org/10.1016/j.cej.2018.09.062

    Article  CAS  Google Scholar 

  14. Dewil R, Mantzavinos D, Poulios I, Rodrigo MA (2017) New perspectives for advanced oxidation processes. J Environ Manag 195:93–99. https://doi.org/10.1016/j.jenvman.2017.04.010

    Article  CAS  Google Scholar 

  15. Scaria J, Nidheesh PV (2022) Comparison of hydroxyl-radical-based advanced oxidation processes with sulfate radical-based advanced oxidation processes. Curr Opin Chem Eng 36:100830. https://doi.org/10.1016/j.coche.2022.100830

    Article  Google Scholar 

  16. Liu H, Fu Y, Chen S, Zhang W, Xiang K, Shen F, Xiao R, Chai L, Zhao F (2023) A layered g-C3N4 support single-atom Fe-N4 catalyst derived from hemin to activate PMS for selective degradation of electron-rich compounds via singlet oxygen species. Chem Eng J 474:145571. https://doi.org/10.1016/j.cej.2023.145571

    Article  CAS  Google Scholar 

  17. Tang J, Xu J, Zhang H, Liu W, Li H, Xia J, Xing X (2023) High efficient PMS activation by synergistic effects of bimetallic sulfide FeS2@MoS2 for rapid OFX degradation. Chem Eng J 475:146023. https://doi.org/10.1016/j.cej.2023.146023

    Article  CAS  Google Scholar 

  18. Zhu S, Li X, Kang J, Duan X, Wang S (2019) Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ Sci Technol 53:307–315. https://doi.org/10.1021/acs.est.8b04669

    Article  CAS  PubMed  Google Scholar 

  19. Zhao C, Shao B, Yan M, Liu Z, Liang Q, He Q, Wu T, Liu Y, Pan Y, Huang J, Wang J, Liang J, Tang L (2021) Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: a review. Chem Eng J 416:128829. https://doi.org/10.1016/j.cej.2021.128829

    Article  CAS  Google Scholar 

  20. Liu R, Xu Y, Chen B (2018) Self-assembled nano-FeO(OH)/reduced graphene oxide aerogel as a reusable catalyst for photo-fenton degradation of phenolic organics. Environ Sci Technol 52:7043–7053. https://doi.org/10.1021/acs.est.8b01043

    Article  CAS  PubMed  Google Scholar 

  21. Lan J, Zhang Q, Yang G, Liu Z, Peng F (2023) Removal of tetracycline hydrochloride by N, P co-doped carbon encapsulated Fe2P activating PMS: a non-radical pathway dominated by singlet oxygen. J Environ Chem Eng 11:110481. https://doi.org/10.1016/j.jece.2023.110481

    Article  CAS  Google Scholar 

  22. Liu L, Li Y, Li W, Zhong R, Lan Y, Guo J (2020) The efficient degradation of sulfisoxazole by singlet oxygen (1O2) derived from activated peroxymonosulfate (PMS) with Co3O4–SnO2/RSBC. Environ Res 187:109665. https://doi.org/10.1016/j.envres.2020.109665

    Article  CAS  PubMed  Google Scholar 

  23. Lu J, Zhou Y, Zhou Y (2021) Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides. Chem Eng J 422:130126. https://doi.org/10.1016/j.cej.2021.130126

    Article  CAS  Google Scholar 

  24. Jiang F, Qiu B, Sun D (2018) Advanced degradation of refractory pollutants in incineration leachate by UV/Peroxymonosulfate. Chem Eng J 349:338–346. https://doi.org/10.1016/j.cej.2018.05.062

    Article  CAS  Google Scholar 

  25. Liu L, Lin S, Zhang W, Farooq U, Shen G, Hu S (2018) Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process. Chem Eng J 346:515–524. https://doi.org/10.1016/j.cej.2018.04.068

    Article  CAS  Google Scholar 

  26. Santos A, Fernandez J, Rodriguez S, Dominguez CM, Lominchar MA, Lorenzo D, Romero A (2018) Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Sci Total Environ 615:1070–1077. https://doi.org/10.1016/j.scitotenv.2017.09.224

    Article  CAS  PubMed  Google Scholar 

  27. Lei Y-J, Tian Y, Fang C, Zhan W, Duan L-C, Zhang J, Zuo W, Kong X-W (2019) Insights into the oxidation kinetics and mechanism of diesel hydrocarbons by ultrasound activated persulfate in a soil system. Chem Eng J 378:122253. https://doi.org/10.1016/j.cej.2019.122253

    Article  CAS  Google Scholar 

  28. Yuan G-E, Qin Y, Feng M, Zhang W, Ru X, Zhang X (2021) Synergistic activation of persulfate by natural chalcocite and ferrous ions by promoting the cycling of Fe3+/Fe2+ couple for degradation of organic pollutants. Ecotoxicol Environ Saf 212:111975. https://doi.org/10.1016/j.ecoenv.2021.111975

    Article  CAS  PubMed  Google Scholar 

  29. Luo R, Liu C, Li J, Wang J, Hu X, Sun X, Shen J, Han W, Wang L (2017) Nanostructured CoP: an efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate. J Hazard Mater 329:92–101. https://doi.org/10.1016/j.jhazmat.2017.01.032

    Article  CAS  PubMed  Google Scholar 

  30. Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712. https://doi.org/10.1021/es035121o

    Article  CAS  PubMed  Google Scholar 

  31. Wu Y, Zhu J, Bai J, Lin L, Yu C (2023) The ability of pre-magnetized zero-valent iron for peroxymonosulfate activation to remove ofloxacin. Chem Eng J 461:141825. https://doi.org/10.1016/j.cej.2023.141825

    Article  CAS  Google Scholar 

  32. Li Z, Li K, Ma S, Dang B, Li Y, Fu H, Du J, Meng Q (2021) Activation of peroxymonosulfate by iron-biochar composites: comparison of nanoscale Fe with single-atom Fe. J Colloid Interface Sci 582:598–609. https://doi.org/10.1016/j.jcis.2020.08.049

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Wan Y, Li Y, Yao G, Lai B (2019) Surface Fe(III)/Fe(II) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine. Appl Catal B Environ 256:117782. https://doi.org/10.1016/j.apcatb.2019.117782

    Article  CAS  Google Scholar 

  34. Liu J, Yang Q, Wang D, Li X, Zhong Y, Li X, Deng Y, Wang L, Yi K, Zeng G (2016) Enhanced dewaterability of waste activated sludge by Fe (II)-activated peroxymonosulfate oxidation. Bioresour Technol 206:134–140. https://doi.org/10.1016/j.biortech.2016.01.088

    Article  CAS  PubMed  Google Scholar 

  35. Zhou Z, Ye G, Zong Y, Zhao Z, Xu L, Wu D (2023) Enhanced organic contaminants degradation via coupling molybdenum powder with tripolyphosphate in Fe(II)-based peroxymonosulfate activation. Chem Eng J 471:144512. https://doi.org/10.1016/j.cej.2023.144512

    Article  CAS  Google Scholar 

  36. Zhao Y, Lu D, Xu C, Zhong J, Chen M, Xu S, Cao Y, Zhao Q, Yang M, Ma J (2020) Synergistic oxidation - filtration process analysis of catalytic CuFe2O4 - tailored ceramic membrane filtration via peroxymonosulfate activation for humic acid treatment. Water Res 171:115387. https://doi.org/10.1016/j.watres.2019.115387

    Article  CAS  PubMed  Google Scholar 

  37. Wu Y, Chen X, Han Y, Yue D, Cao X, Zhao Y, Qian X (2019) Highly efficient utilization of nano-Fe (0) embedded in mesoporous carbon for activation of peroxydisulfate. Environ Sci Technol 53:9081–9090. https://doi.org/10.1021/acs.est.9b02170

    Article  CAS  PubMed  Google Scholar 

  38. Chen J, Wan J, Li C, Wei Y, Shi H (2022) Synthesis of novel Fe0-Fe3O4/CeO2/C composite cathode for efficient heterogeneous electro-Fenton degradation of ceftriaxone sodium. J Hazard Mater 437:129393. https://doi.org/10.1016/j.jhazmat.2022.129393

    Article  CAS  PubMed  Google Scholar 

  39. Dong C, Wang Z, Ye Z, He J, Zheng Z, Gong X, Zhang J, Lo IMC (2021) Superoxide radicals dominated visible light driven peroxymonosulfate activation using molybdenum selenide (MoSe2) for boosting catalytic degradation of pharmaceuticals and personal care products. Appl Catal B Environ 296:120223. https://doi.org/10.1016/j.apcatb.2021.120223

    Article  CAS  Google Scholar 

  40. Du M, Yi Q, Ji J, Zhu Q, Duan H, Xing M, Zhang J (2020) Sustainable activation of peroxymonosulfate by the Mo (IV) in MoS2 for the remediation of aromatic organic pollutants. Chin Chem Lett 31:2803–2808. https://doi.org/10.1016/j.cclet.2020.08.002

    Article  CAS  Google Scholar 

  41. Peng X, Yang Z, Hu F, Tan C, Pan Q, Dai H (2022) Mechanistic investigation of rapid catalytic degradation of tetracycline using CoFe2O4@MoS2 by activation of peroxymonosulfate. Sep Purif Technol 287:120525. https://doi.org/10.1016/j.seppur.2022.120525

    Article  CAS  Google Scholar 

  42. Li Z, Fan R, Hu Z, Li W, Zhou H, Kang S, Zhang Y, Zhang H, Wang G (2020) Ethanol introduced synthesis of ultrastable 1T-MoS2 for removal of Cr (VI). J Hazard Mater 394:122525. https://doi.org/10.1016/j.jhazmat.2020.122525

    Article  CAS  PubMed  Google Scholar 

  43. Xing M, Xu W, Dong C, Bai Y, Zeng J, Zhou Y, Zhang J, Yin Y (2018) Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4:1359–1372. https://doi.org/10.1016/j.chempr.2018.03.002

    Article  CAS  Google Scholar 

  44. Xiao C, Hu Y, Li Q, Liu J, Li X, Shi Y, Chen Y, Cheng J (2023) Carbon-doped defect MoS2 co-catalytic Fe3+/peroxymonosulfate process for efficient sulfadiazine degradation: accelerating Fe3+/Fe2+ cycle and 1O2 dominated oxidation. Sci Total Environ 858:159587. https://doi.org/10.1016/j.scitotenv.2022.159587

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Zhang G, Liu H, Qu J (2019) Confining free radicals in close vicinity to contaminants enables ultrafast fenton-like processes in the interspacing of MoS2 membranes. Angew Chem Int Ed 58:8134–8138. https://doi.org/10.1002/anie.201903531

    Article  CAS  Google Scholar 

  46. Zhu L, Ji J, Liu J, Mine S, Matsuoka M, Zhang J, Xing M (2020) Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew Chem Int Ed 59:13968–13976. https://doi.org/10.1002/anie.202006059

    Article  CAS  Google Scholar 

  47. Yan Z, He F, Zhang J, Fang J, Wang J, Zhou H (2022) Enhanced Fe(III)/PMS system by flower-like MoS2 nanosheet for rapid degradation of tetracycline. J Environ Chem Eng 10:108860. https://doi.org/10.1016/j.jece.2022.108860

    Article  CAS  Google Scholar 

  48. Tong M, Liu F, Dong Q, Ma Z, Liu W (2020) Magnetic Fe3O4-deposited flower-like MoS2 nanocomposites for the Fenton-like Escherichia coli disinfection and diclofenac degradation. J Hazard Mater 385:121604. https://doi.org/10.1016/j.jhazmat.2019.121604

    Article  CAS  PubMed  Google Scholar 

  49. Xu J, Chen J, Zhong Y (2023) Ultrathin MoS2 nanosheet-wrapped Fe3O4 nanocrystals synergistically activate peroxymonosulfate for enhanced removal of organic pollutants. Colloids Surf Physicochem Eng Asp 671:131599. https://doi.org/10.1016/j.colsurfa.2023.131599

    Article  CAS  Google Scholar 

  50. Shu X, Zhou J, Lian W, Jiang Y, Wang Y, Shu R, Liu Y, Han J, Zhuang Y (2021) Size-morphology control, surface reaction mechanism and excellent electromagnetic wave absorption characteristics of Fe3O4 hollow spheres. J Alloys Compd 854:157087. https://doi.org/10.1016/j.jallcom.2020.157087

    Article  CAS  Google Scholar 

  51. Li S, Tang J, Liu Q, Liu X, Gao B (2020) A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol. Environ Int 138:105639. https://doi.org/10.1016/j.envint.2020.105639

    Article  CAS  PubMed  Google Scholar 

  52. Fan L, Gong Y, Wan J, Wei Y, Shi H, Liu C (2022) Flower-like molybdenum disulfide decorated ZIF-8-derived nitrogen-doped dodecahedral carbon for electro-catalytic degradation of phenol. Chemosphere 298:134315. https://doi.org/10.1016/j.chemosphere.2022.134315

    Article  CAS  PubMed  Google Scholar 

  53. Gao B, Du X, Ma Y, Li Y, Li Y, Ding S, Song Z, Xiao C (2020) 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Appl Catal B Environ 263:117750. https://doi.org/10.1016/j.apcatb.2019.117750

    Article  CAS  Google Scholar 

  54. Garcia-Segura S, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C Photochem Rev 31:1–35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005

    Article  CAS  Google Scholar 

  55. Hou D, Zhou W, Liu X, Zhou K, Xie J, Li G, Chen S (2015) Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction. Electrochim Acta 166:26–31. https://doi.org/10.1016/j.electacta.2015.03.067

    Article  CAS  Google Scholar 

  56. Shi Y, Han Z, Yang J, Meng Q (2021) Influence of the Hollowness and Size Distribution on the Magnetic Properties of Fe3O4 Nanospheres. Langmuir 37:9605–9612. https://doi.org/10.1021/acs.langmuir.1c01498

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Zhu T, Chang S, Lu Y, Mi W, Wang W (2020) 3D Nest-Like Architecture of Core-Shell CoFe2O4 @1T/2H-MoS2 Composites with Tunable Microwave Absorption Performance. ACS Appl Mater Interfaces 12:11252–11264. https://doi.org/10.1021/acsami.9b23489

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Zhou L, Zhou Y, Xing M, Zhang J (2020) Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions. Appl Catal B Environ 279:119365. https://doi.org/10.1016/j.apcatb.2020.119365

    Article  CAS  Google Scholar 

  59. Wang Y, Sun H, Duan X, Ang HM, Tadé MO, Wang S (2015) A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. Appl Catal B Environ 172–173:73–81. https://doi.org/10.1016/j.apcatb.2015.02.016

    Article  CAS  Google Scholar 

  60. Lv X, Xu J, Jiang G, Tang J, Xu X (2012) Highly active nanoscale zero-valent iron (nZVI)–Fe3O4 nanocomposites for the removal of chromium (VI) from aqueous solutions. J Colloid Interface Sci 369:460–469. https://doi.org/10.1016/j.jcis.2011.11.049

    Article  CAS  PubMed  Google Scholar 

  61. Lu J, Zhou Y, Lei J, Ao Z, Zhou Y (2020) Fe3O4/graphene aerogels: a stable and efficient persulfate activator for the rapid degradation of malachite green. Chemosphere 251:126402. https://doi.org/10.1016/j.chemosphere.2020.126402

    Article  CAS  PubMed  Google Scholar 

  62. Zhu T, Shen W, Wang X, Song Y-F, Wang W (2019) Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem Eng J 378:122159. https://doi.org/10.1016/j.cej.2019.122159

    Article  CAS  Google Scholar 

  63. Bai R, Yan W, Xiao Y, Wang S, Tian X, Li J, Xiao X, Lu X, Zhao F (2020) Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine. Chem Eng J 397:125501. https://doi.org/10.1016/j.cej.2020.125501

    Article  CAS  Google Scholar 

  64. Zhu K, Qin W, Gan Y, Huang Y, Jiang Z, Chen Y, Li X, Yan K (2023) Acceleration of Fe3+/Fe2+ cycle in garland-like MIL-101(Fe)/MoS2 nanosheets to promote peroxymonosulfate activation for sulfamethoxazole degradation. Chem Eng J 470:144190. https://doi.org/10.1016/j.cej.2023.144190

    Article  CAS  Google Scholar 

  65. Wang Q, Lu J, Yu M, Li H, Lin X, Nie J, Lan N, Wang Z (2023) Sulfur vacancy rich MoS2/FeMoO4 composites derived from MIL-53(Fe) as PMS activator for efficient elimination of dye: Nonradical 1O2 dominated mechanism. Environ Pollut 333:121990. https://doi.org/10.1016/j.envpol.2023.121990

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Zhu C, Chen L, Liu L, Zhang J, Yang N, Li Y (2023) Self-driven degradation of TC-HCl by CuFe2O4/Bi2O3 activated peroxymonosulfate. Chem Eng J 473:145282. https://doi.org/10.1016/j.cej.2023.145282

    Article  CAS  Google Scholar 

  67. Huang W, Jin X, Li Q, Wang Y, Huang D, Fan S, Yan J, Huang Y, Astruc D, Liu X (2023) Co3O4 Nanocubes for Degradation of Oxytetracycline in Wastewater via Peroxymonosulfate Activation. ACS Appl Nano Mater 6:12497–12506. https://doi.org/10.1021/acsanm.3c02260

    Article  CAS  Google Scholar 

  68. Yu J, Afzal S, Zeng T, Wang H, Fu H (2023) Degradation of bisphenol A by peroxymonosulfate activated with MIL-88B(Fe) derived CC-Fe/C catalysts: Effect of annealing temperature, performance and mechanism. Catal Commun 177:106660. https://doi.org/10.1016/j.catcom.2023.106660

    Article  CAS  Google Scholar 

  69. Zhu S, Xu Y, Zhu Z, Liu Z, Wang W (2020) Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation. Chem Eng J 384:123298. https://doi.org/10.1016/j.cej.2019.123298

    Article  CAS  Google Scholar 

  70. Cai W-W, Peng T, Yang B, Xu C, Liu Y-S, Zhao J-L, Gu F-L, Ying G-G (2020) Kinetics and mechanism of reactive radical mediated fluconazole degradation by the UV/chlorine process: experimental and theoretical studies. Chem Eng J 402:126224. https://doi.org/10.1016/j.cej.2020.126224

    Article  CAS  Google Scholar 

  71. Du W, Zhang Q, Shang Y, Wang W, Li Q, Yue Q, Gao B, Xu X (2020) Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation. Appl Catal B Environ 262:118302. https://doi.org/10.1016/j.apcatb.2019.118302

    Article  CAS  Google Scholar 

  72. Yang J-CE, Yuan B, Cui H-J, Wang S, Fu M-L (2017) Modulating oxone-MnOx/silica catalytic systems towards ibuprofen degradation: Insights into system effects, reaction kinetics and mechanisms. Appl Catal B Environ 205:327–339. https://doi.org/10.1016/j.apcatb.2016.12.046

    Article  CAS  Google Scholar 

  73. Ghanbari F, Moradi M, Gohari F (2016) Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals. J Water Process Eng 9:22–28. https://doi.org/10.1016/j.jwpe.2015.11.011

    Article  Google Scholar 

  74. Gao Y, Zou D (2020) Efficient degradation of levofloxacin by a microwave–3D ZnCo2O4/activated persulfate process: Effects, degradation intermediates, and acute toxicity. Chem Eng J 393:124795. https://doi.org/10.1016/j.cej.2020.124795

    Article  CAS  Google Scholar 

  75. Zhang R, Sun P, Boyer TH, Zhao L, Huang C-H (2015) Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS. Environ Sci Technol 49:3056–3066. https://doi.org/10.1021/es504799n

    Article  CAS  PubMed  Google Scholar 

  76. Chen L, Yang S, Zuo X, Huang Y, Cai T, Ding D (2018) Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate. Chem Eng J 354:856–865. https://doi.org/10.1016/j.cej.2018.08.098

    Article  CAS  Google Scholar 

  77. Li W, Liu B, Wang Z, Wang K, Lan Y, Zhou L (2020) Efficient activation of peroxydisulfate (PDS) by rice straw biochar modified by copper oxide (RSBC-CuO) for the degradation of phenacetin (PNT) Chem. Eng J 395:125094. https://doi.org/10.1016/j.cej.2020.125094

    Article  CAS  Google Scholar 

  78. Ding D, Yang S, Chen L, Cai T (2020) Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon (CoFe@N-GC) activated peroxymonosulfate. Chem Eng J 392:123725. https://doi.org/10.1016/j.cej.2019.123725

    Article  CAS  Google Scholar 

  79. Luo J, Bo S, Qin Y, An Q, Xiao Z, Zhai S (2020) Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation. Chem Eng J 395:125063. https://doi.org/10.1016/j.cej.2020.125063

    Article  CAS  Google Scholar 

  80. Peng G, Zhang M, Deng S, Shan D, He Q, Yu G (2018) Adsorption and catalytic oxidation of pharmaceuticals by nitrogen-doped reduced graphene oxide/Fe3O4 nanocomposite. Chem Eng J 341:361–370. https://doi.org/10.1016/j.cej.2018.02.064

    Article  CAS  Google Scholar 

  81. Wang L, Zheng X, Yan L, Song W, Li Y, Wu B, Li X (2023) Multiphasic MoS2 activates peroxymonosulfate for efficient removal of oxytetracycline: the dominant role of surface reactive species. Sep Purif Technol 317:123907. https://doi.org/10.1016/j.seppur.2023.123907

    Article  CAS  Google Scholar 

  82. Xu J, Chen J, Zhong Y, Cao L, Zhang X, Wang Z, Chen J, Lin S, Xu Q, Chen Y, Yu L (2023) Ultrathin MoS2 nanosheet-wrapped Fe3O4 nanocrystals synergistically activate peroxymonosulfate for enhanced removal of organic pollutants. Colloids Surf Physicochem Eng Asp 671:131599. https://doi.org/10.1016/j.colsurfa.2023.131599

    Article  CAS  Google Scholar 

  83. Zhang Y, Zhou J, Chen X, Wang L, Cai W (2019) Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chem Eng J 369:745–757. https://doi.org/10.1016/j.cej.2019.03.108

    Article  CAS  Google Scholar 

  84. Chen Q, Yang W, Zhu J, Fu L, Li D, Zhou L (2020) Enhanced visible light photocatalytic activity of g-C3N4 decorated ZrO2-x nanotubes heterostructure for degradation of tetracycline hydrochloride. J Hazard Mater 384:121275. https://doi.org/10.1016/j.jhazmat.2019.121275

    Article  CAS  PubMed  Google Scholar 

  85. Liu S-S, Xing Q-J, Chen Y, Zhu M, Jiang X-H, Wu S-H, Dai W, Zou J-P (2019) Photoelectrochemical degradation of organic pollutants using BiOBr anode coupled with simultaneous CO2 reduction to liquid fuels via CuO cathode. ACS Sustain Chem Eng 7:1250–1259. https://doi.org/10.1021/acssuschemeng.8b04917

    Article  CAS  Google Scholar 

  86. Wu W, Sun Y, Zhou H (2022) In-situ construction of β-Bi2O3/Ag2O photocatalyst from deactivated AgBiO3 for tetracycline degradation under visible light. Chem Eng J 432:134316. https://doi.org/10.1016/j.cej.2021.134316

    Article  CAS  Google Scholar 

  87. Zhu M, Tang Y, Chen X, Liao B, Yu Y, Hou S, Fan X (2022) Internal electric field and oxygen vacancies synergistically optimized Ba2+ doped SrBi2B2O7 for photocatalytic tetracycline degradation from water. Chem Eng J 433:134580. https://doi.org/10.1016/j.cej.2022.134580

    Article  CAS  Google Scholar 

  88. Wang A, Zheng Z, Wang H, Chen Y, Luo C, Liang D, Hu B, Qiu R, Yan K (2020) 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation. Appl Catal B Environ 277:119171. https://doi.org/10.1016/j.apcatb.2020.119171

    Article  CAS  Google Scholar 

  89. Chen D, Bai Q, Ma T, Jing X, Tian Y, Zhao R, Zhu G (2022) Stable metal–organic framework fixing within zeolite beads for effectively static and continuous flow degradation of tetracycline by peroxymonosulfate activation. Chem Eng J 435:134916. https://doi.org/10.1016/j.cej.2022.134916

    Article  CAS  Google Scholar 

  90. Yang T, Ma T, Yang L, Dai W, Zhang S, Luo S (2021) A self-supporting UiO-66 photocatalyst with Pd nanoparticles for efficient degradation of tetracycline. Appl Surf Sci 544:148928. https://doi.org/10.1016/j.apsusc.2021.148928

    Article  CAS  Google Scholar 

  91. Wu S, Li X, Tian Y, Lin Y, Hu YH (2021) Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light. Chem Eng J 406:126747. https://doi.org/10.1016/j.cej.2020.126747

    Article  CAS  Google Scholar 

  92. Li Y, Yu B, Hu Z, Wang H (2022) Construction of direct Z-scheme SnS2@ZnIn2S4@kaolinite heterostructure photocatalyst for efficient photocatalytic degradation of tetracycline hydrochloride. Chem Eng J 429:132105. https://doi.org/10.1016/j.cej.2021.132105

    Article  CAS  Google Scholar 

  93. Liu C, Dai H, Tan C, Pan Q, Hu F, Peng X (2022) Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: mechanism insight, degradation pathways and DFT calculation. Appl Catal B Environ 310:121326. https://doi.org/10.1016/j.apcatb.2022.121326

    Article  CAS  Google Scholar 

  94. Pi Z, Li X, Wang D, Xu Q, Tao Z, Huang X, Yao F, Wu Y, He L, Yang Q (2019) Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: Performance and degradation pathway. J Clean Prod 235:1103–1115. https://doi.org/10.1016/j.jclepro.2019.07.037

    Article  CAS  Google Scholar 

  95. Yi X-H, Wang T-Y, Chu H-Y (2022) Effective elimination of tetracycline antibiotics via photoactivated SR-AOP over vivianite: a new application approach of phosphorus recovery product from WWTP. Chem Eng J 449:137784. https://doi.org/10.1016/j.cej.2022.137784

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding from the Natural Science Foundation of Heilongjiang Province of China (LH2022B018) and the Youth Science and Technology Innovation Team Project of Heilongjiang Province (2021-KYYWF-0030).

Author information

Authors and Affiliations

Authors

Contributions

Pan Liu: Conceptualization, Methodology, Validation, Data curation, Writing-original draft, Writing-review and editing. Haolin Shi: Methodology, Resources, Data curation. Xinyue Feng: Conceptualization, Investigation. Chuntao Liu: Project administration. Fangwei Ma: Resources, Conceptualization. Jiafeng Wan: Supervision, Methodology, Writing-review & editing.

Corresponding authors

Correspondence to Chuntao Liu or Jiafeng Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This study did not use human or animal tissues.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 981 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Shi, H., Feng, X. et al. Flower-like Fe0-Fe3O4@MoS2 hollow spheres activate peroxymonosulfate for the degradation of tetracycline hydrochloride. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09697-z

Navigation