Skip to main content
Log in

Advancing sustainable technologies: plasma-engineered bioplastics with silver nanoparticle integration

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The advancement of sustainable packaging technologies is crucial for environmental conservation and enhancing food shelf life. We advance sustainable packaging by developing cassava starch sheets functionalized with silver nanoparticles (AgNPs) via plasma-deposited 2-methyl-2-oxazoline thin film. This innovative method requires less precursors and generates no liquid waste, presenting a significant leap in eco-friendly packaging solutions. Uniquely, it deviates from traditional nanoparticle incorporation methods by emphasising surface functionalization over bulk integration, leveraging plasma polymerization for environmentally friendly and efficient AgNP immobilisation. This surface-centric approach offers distinct advantages in active packaging by enhancing the initial antimicrobial interaction at the packaging's surface. Surface morphology, characterised by SEM–EDX, and chemical composition, verified by XPS, indicated successful AgNP immobilisation after 5 and 25 h, albeit with some aggregation at prolonged immobilisation time. UV–Vis spectroscopy results confirmed the successful immobilisation of AgNPs and suggested enhanced light barrier properties of the treated sheets. AFM measurements revealed alterations in surface roughness post-treatment, correlating with changes in hydrophilicity and potentially impacting the moisture barrier properties of the packaging. The treated bioplastics showed improved mechanical properties, indicated by tensile strength and elongation at break. Antimicrobial testing revealed substantial efficacy against Gram-positive and Gram-negative bacteria, but not against fungi. All bioplastic samples demonstrated non-toxicity to fibroblast cells, irrespective of the treatments applied. This work paves the way for future developments targeted at improving the efficacy and scalability of plasma-nanoengineered bioplastics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request(s) from the corresponding author.

References

  1. Fadiji T, Rashvand M, Daramola MO, Iwarere SA (2023) A review on antimicrobial packaging for extending the shelf life of food. Processes 11:590

    Article  CAS  Google Scholar 

  2. Bauer F, Nielsen TD, Nilsson LJ, Palm E, Ericsson K, Fråne A, Cullen J (2022) Plastics and climate change—Breaking carbon lock-ins through three mitigation pathways. One Earth 5:361

    Article  Google Scholar 

  3. Onyeaka H, Obileke K, Makaka G, Nwokolo N (2022) Current research and applications of starch-based biodegradable films for food packaging. Polymers (Basel) 14:1126

    Article  CAS  PubMed  Google Scholar 

  4. Cheng H, Chen L, McClements DJ, Yang T, Zhang Z, Ren F, Miao M, Tian Y, Jin Z (2021) Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci Technol 114:70

    Article  CAS  Google Scholar 

  5. Fuciños C, Fuciños P, Amado IR, Míguez M, Fajardo P, Pastrana LM, Rúa ML (2016) Active and smart packaging. In: Barros-Velázquez J (ed) Antimicrobial food packaging, 1st edn. Academic Press, San Diego, pp 349

    Chapter  Google Scholar 

  6. Bahmid NA, Pepping L, Dekker M, Fogliano V, Heising J (2020) Using particle size and fat content to control the release of Allyl isothiocyanate from ground mustard seeds for its application in antimicrobial packaging. Food Chem 308:125573

    Article  CAS  PubMed  Google Scholar 

  7. Bahmid NA, Dekker M, Fogliano V, Heising J (2021) Development of a moisture-activated antimicrobial film containing ground mustard seeds and its application on meat in active packaging system. Food Packag Shelf Life 30:100753

    Article  CAS  Google Scholar 

  8. Schaefer D, Cheung WM (2018) Smart Packaging: Opportunities and Challenges. Procedia CIRP 72:1022

    Article  Google Scholar 

  9. Ramadan MA, Sharawy S, Elbisi MK, Ghosal K (2020) Eco-friendly Packaging Composite Fabrics based on in situ synthesized Silver nanoparticles (AgNPs) & treatment with Chitosan and/or Date seed extract. Nano-Structures & Nano-Objects 22:100425

    Article  CAS  Google Scholar 

  10. Kraśniewska K, Galus S, Gniewosz M (2020) Biopolymers-based materials containing silver nanoparticles as active packaging for food applications: A review. Int J Mol Sci 21:698

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273

    Article  Google Scholar 

  12. De Matteis V, Cascione M, Costa D, Martano S, Manno D, Cannavale A, Mazzotta S, Paladini F, Martino M, Rinaldi R (2023) Aloe vera silver nanoparticles addition in chitosan films: improvement of physicochemical properties for eco-friendly food packaging material. J Market Res 24:1015

    Google Scholar 

  13. Cakić M, Glišić S, Nikolić G, Nikolić GM, Cakić K, Cvetinov M (2016) Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. J Mol Struct 1110:156

    Article  Google Scholar 

  14. Scott C, Wisdom N-H, Coulter K, Bardin S, Strap JL, Trevani L (2023) Interdisciplinary undergraduate laboratory for an integrated chemistry/biology program: synthesis of silver nanoparticles (agnps)-cellulose composite materials with antimicrobial activity. J Chem Educ 100:1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Badawy MEI, Lotfy TMR, Shawir SMS (2019) Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. Bull Pharm Res Inst 43:83

    Google Scholar 

  16. Shankar S, Tanomrod N, Rawdkuen S, Rhim JW (2016) Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol 92:842

    Article  CAS  PubMed  Google Scholar 

  17. Garcia EL, Attallah OA, Mojicevic M, Devine DM, Brennan Fournet M (2021) Antimicrobial active bioplastics using triangular silver nanoplate integrated polycaprolactone and polylactic acid films. Materials (Basel) 14:1132

    Article  CAS  PubMed  Google Scholar 

  18. Ninan N, Joseph B, Visalakshan RM, Bright R, Denoual C, Zilm P, Dalvi YB, Priya PV, Mathew A, Grohens Y, Kalarikkal N, Vasilev K, Thomas S (2021) Plasma assisted design of biocompatible 3D printed PCL/silver nanoparticle scaffolds: in vitro and in vivo analyses. Mater Adv 2:6620

    Article  CAS  Google Scholar 

  19. Wahono SK, Stalin J, Addai-Mensah J, Skinner W, Vinu A, Vasilev K (2020) Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity. Microporous Mesoporous Mater 294:109871

    Article  CAS  Google Scholar 

  20. Ramiasa-MacGregor M, Mierczynska A, Sedev R, Vasilev K (2016) Tuning and predicting the wetting of nanoengineered material surface. Nanoscale 8:4635

    Article  CAS  PubMed  Google Scholar 

  21. Mierczynska A, Michelmore A, Tripathi A, Goreham RV, Sedev R, Vasilev K (2012) pH-tunable gradients of wettability and surface potential. Soft Matter 8:8399

    Article  CAS  Google Scholar 

  22. Goreham RV, Short RD, Vasilev K (2011) Method for the Generation of Surface-Bound Nanoparticle Density Gradients. The Journal of Physical Chemistry C 115:3429

    Article  CAS  Google Scholar 

  23. Vasilev K, Ramiasa-MacGregor M (2018) Nanoengineered plasma polymer films for biomedical applications. Adv Mater Lett 9:42

    Article  CAS  Google Scholar 

  24. Vasilev K, Michelmore A, Griesser HJ, Short RD (2009) Substrate influence on the initial growth phase of plasma-deposited polymer films. Chem Commun 24:3600

    Article  Google Scholar 

  25. MacGregor M, Sinha U, Visalakshan RM, Cavallaro A, Vasilev K (2019) Preserving the reactivity of coatings plasma deposited from oxazoline precursors − An in depth study. Plasma Processes Polym 16:1800130

    Article  Google Scholar 

  26. Joseph B, Ninan N, Visalakshan RM, Denoual C, Bright R, Kalarikkal N, Grohens Y, Vasilev K, Thomas S (2021) Insights into the biomechanical properties of plasma treated 3D printed PCL scaffolds decorated with gold nanoparticles. Compos Sci Technol 202:108544

    Article  CAS  Google Scholar 

  27. Dabare RLP, Bachhuka A, Palms D, Parkinson-Lawrence E, Hayball JD, Mierczynska A, Vasilev K (2022) Surface chemistry mediated albumin adsorption, conformational changes and influence on innate immune responses. Appl Surf Sci 596:153518

    Article  Google Scholar 

  28. Chen Z, Visalakshan RM, Guo J, Wei F, Zhang L, Chen L, Lin Z, Vasilev K, Xiao Y (2019) Plasma deposited poly-oxazoline nanotextured surfaces dictate osteoimmunomodulation towards ameliorative osteogenesis. Acta Biomater 96:568

    Article  CAS  PubMed  Google Scholar 

  29. Macgregor M, Vasilev K (2019) Perspective on plasma polymers for applied biomaterials nanoengineering and the recent rise of oxazolines. Materials (Basel) 12:191

    Article  CAS  PubMed  Google Scholar 

  30. Macgregor-Ramiasa MN, Cavallaro AA, Vasilev K (2015) Properties and reactivity of polyoxazoline plasma polymer films. Journal of Materials Chemistry B 3:6327

    Article  CAS  PubMed  Google Scholar 

  31. Ramiasa MN, Cavallaro AA, Mierczynska A, Christo SN, Gleadle JM, Hayball JD, Vasilev K (2015) Plasma polymerised polyoxazoline thin films for biomedical applications. Chem comm 51:4279

    Article  CAS  PubMed  Google Scholar 

  32. Macgregor MN, Michelmore A, Safizadeh Shirazi H, Whittle J, Vasilev K (2017) Secrets of Plasma-Deposited Polyoxazoline Functionality Lie in the Plasma Phase. Chem Mater 29:8047

    Article  CAS  Google Scholar 

  33. Macgregor-Ramiasa M, McNicholas K, Ostrikov K, Li J, Michael M, Gleadle JM, Vasilev K (2017) A platform for selective immuno-capture of cancer cells from urine. Biosens Bioelectron 96:373

    Article  CAS  PubMed  Google Scholar 

  34. Visalakshan RM, Cavallaro AA, MacGregor MN, Lawrence EP, Koynov K, Hayball JD, Vasilev K (2019) Nanotopography-Induced Unfolding of Fibrinogen Modulates Leukocyte Binding and Activation. Adv Func Mater 29:1807453

    Article  Google Scholar 

  35. Yan S, Jiang C, Guo J, Fan Y, Zhang Y (2019) Synthesis of silver nanoparticles loaded onto polymer-inorganic composite materials and their regulated catalytic activity. Polymers 11(3):401

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lengert EV, Koltsov SI, Li J, Ermakov AV, Parakhonskiy BV, Skorb EV, Skirtach AG (2020) Nanoparticles in polyelectrolyte multilayer layer-by-layer (lbl) films and capsules—key enabling components of hybrid coatings. Coatings 10:1131

    Article  CAS  Google Scholar 

  37. Tylkowski B, Trojanowska A, Nowak M, Marciniak L, Jastrzab R (2017) Applications of silver nanoparticles stabilized and/or immobilized by polymer matrixes. Phys Sci Rev 2:20170024

    Google Scholar 

  38. Zhang S, Liang X, Gadd GM, Zhao Q (2021) A sol–gel based silver nanoparticle/polytetrafluorethylene (AgNP/PTFE) coating with enhanced antibacterial and anti-corrosive properties. Appl Surf Sci 535:147675

    Article  CAS  Google Scholar 

  39. Aljohani M, Alkabli J, Abualnaja MM, Alrefaei AF, Almehmadi SJ, Mahmoud MHH, El-Metwaly NM (2021) Electrospun AgNPs-polylactate nanofibers and their antimicrobial applications. React Funct Polym 167:104999

    Article  CAS  Google Scholar 

  40. Allizond V, Banche G, Salvoni M, Malandrino M, Cecone C, Cuffini AM, Bracco P (2023) Facile one-step electrospinning process to prepare AgNPs-loaded PLA and PLA/PEO mats with antibacterial activity. Polymers (Basel) 15:1470

    Article  Google Scholar 

  41. Perera KY, Prendeville J, Jaiswal AK, Jaiswal S (2022) Cold plasma technology in food packaging. Coatings 12:1896

    Article  CAS  Google Scholar 

  42. Pidhatika B, Ninan N, Bright R, Palms D, Rahmawan Y, Vasilev K (2024).Plasma-assisted surface engineering for value added in starch bioplastics: A study on enhanced surface properties and natural dye immobilization. Journal of Applied Polymer Science n/a: e55130.

  43. Vasilev K, Michelmore A, Martinek P, Chan J, Sah V, Griesser HJ, Short RD (2010) Early stages of growth of plasma polymer coatings deposited from nitrogen- and oxygen-containing monomers. Plasma Processes Polym 7:824

    Article  CAS  Google Scholar 

  44. Huo SH, Qian M, Schaffer GB, Crossin E (2011) 21 - aluminium powder metallurgy. In: Lumley R (ed) Fundamentals of aluminium metallurgy. Woodhead Publishing, Cambridge, pp 655

    Chapter  Google Scholar 

  45. Yamashita Y, Miyahara R, Sakamoto K (2017) Chapter 28 - emulsion and emulsification technology. In: Sakamoto K, Lochhead RY, Maibach HI, Yamashita Y (eds) Cosmetic science and technology, 1st edn. Elsevier, Amsterdam, pp 489

    Chapter  Google Scholar 

  46. Dabare PR, Reilly T, Mierczynski P, Bindon K, Vasilev K, Mierczynska-Vasilev A (2023) A novel solution to tartrate instability in white wines. Food Chem 422:136159

    Article  CAS  PubMed  Google Scholar 

  47. Taheri S, Cavallaro A, Christo SN, Smith LE, Majewski P, Barton M, Hayball JD, Vasilev K (2014) Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 35:4601

    Article  CAS  PubMed  Google Scholar 

  48. Wu F, Misra M, Mohanty AK (2021) Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 117:101395

    Article  CAS  Google Scholar 

  49. Khoirunnisa AR, Joni IM, Panatarani C, Rochima E, Praseptiangga D (2018).UV-screening, transparency and water barrier properties of semi refined iota carrageenan packaging film incorporated with ZnO nanoparticles. AIP Conference Proceedings 1927:030041

  50. Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Bouj S (2019) Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors 9:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morales-Luckie RA, Sánchez-Mendieta V, Olea-Mejia O, Vilchis-Nestor AR, López-Téllez G, Varela-Guerrero V, Huerta L, Arenas-Alatorre J (2013) Facile solventless synthesis of a nylon-6,6/silver nanoparticles composite and its xps study. International Journal of Polymer Science 2013:235850

    Article  Google Scholar 

  52. Chicea D, Nicolae-Maranciuc A, Doroshkevich AS, Chicea LM, Ozkendir OM (2023) Comparative synthesis of silver nanoparticles: Evaluation of chemical reduction procedures, AFM and DLS size analysis. Materials (Basel) 16:5244

    Article  CAS  PubMed  Google Scholar 

  53. Djafari Petroudy SR (2017) 3 - Physical and mechanical properties of natural fibers. In: Fan M, Fu F (eds) Advanced high strength natural fibre composites in construction. Woodhead Publishing, Cambridge, pp 59

    Chapter  Google Scholar 

  54. Tavares da Costa MV, Li L, Berglund LA (2023) Fracture properties of thin brittle MTM clay coating on ductile HEC polymer substrate. Mater Des 230:111947

    Article  CAS  Google Scholar 

  55. Shah YA, Bhatia S, Al-Harrasi A, Afzaal M, Saeed F, Anwer MK, Khan MR, Jawad M, Akram N, Faisal Z (2023) Mechanical properties of protein-based Food packaging materials. Polymers (Basel) 15:1724

    Article  CAS  PubMed  Google Scholar 

  56. Hariri S (2022) Detection of escherichia coli in food samples using culture and polymerase chain reaction methods. Cureus 14:e32808

    PubMed  PubMed Central  Google Scholar 

  57. Silva S, Botelho C, Henriques M (2015) Candida as foodborne pathogens. In: Paterson RRM, Lima N (eds) Molecular biology of food and water borne mycotoxigenic and mycotic fungi, 1st edn. CRC Press, Boca Raton, London, New York, pp 197

    Google Scholar 

  58. González García LE, MacGregor MN, Visalakshan RM, Ninan N, Cavallaro AA, Trinidad AD, Zhao Y, Hayball AJD, Vasilev K (2019) Self-sterilizing antibacterial silver-loaded microneedles Chem Comm 55:171

    Google Scholar 

  59. Noga M, Milan J, Frydrych A, Jurowski K (2023) Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (agnps)—critical review: state of the art. Int J Mol Sci 24:5133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Efsa Panel on Food Contact Materials EaPA, Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Steffensen I-L, Tlustos C, Van Loveren H, Vernis L, Zorn H, Castle L, Di Consiglio E, Franz R, Hellwig N, Merkel S, Milana MR, Barthélémy E, Rivière G (2021) Safety assessment of the substance silver nanoparticles for use in food contact materials. EFSA J 19:e06790

    Google Scholar 

  61. Wāng Y, Han Y, Xu DX (2024) Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. Environ Sci Ecotechnology 19:100325

    Article  Google Scholar 

  62. Fahmy HM, Mosleh AM, Elghany AA, Shams-Eldin E, Abu Serea ES, Ali SA, Shalan AE (2019) Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv 9:20118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M (2023) Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. Journal of Functional Biomaterials 14:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang Y, Huang J, Wu X, Ren Y, Li Z, Ren J (2020) Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds. Int J Biol Macromol 149:148

    Article  CAS  PubMed  Google Scholar 

  65. Subbiah R, Jeon SB, Park K, Ahn SJ, Yun K, An SSA (2015) Investigation of cellular responses upon interaction with silver nanoparticles. Int J Nanomed 10:191

    CAS  Google Scholar 

Download references

Acknowledgements

KV thanks the National Health and Medical Research Council (NHMRC) for Grant GNT1194466. BP thanks LPDP for the Research Grant through Riset dan Inovasi untuk Indonesia Maju (RIIM) batch 4, 172/IV/KS/11/2023 and 6815/UN1/DITLIT/Dit-Lit/KP.01.03/2023, and BRIN for research facilities through e-Layanan Sains (ELSa).

Funding

This study was funded by National Health and Medical Research Council, GNT1194466, Krasimir Vasilev, Indonesia Endowment Fund for Education Agency (LPDP), 172/IV/KS/11/2023, Bidhari Pidhatika, 6815/UN1/DITLIT/Dit-Lit/KP.01.03/2023, Bidhari Pidhatika

Author information

Authors and Affiliations

Authors

Contributions

NN, BP, and RB contributed equally to the manuscript. More details on author contributions: NN, BP, RB, BMK, RPR, YAS, RAD performed experiments and data analysis; NN, BP, RB were involved in writing initial draft; BP, KV acquired the funding; NN, BP, RB, BMK, RPR, YAS, RAD, KV helped in editing and proofreading.

Corresponding authors

Correspondence to Bidhari Pidhatika or Krasimir Vasilev.

Ethics declarations

Conflict of interest disclosure

We attest that, as of this writing, there is no current conflict of interest or unfair advantage that would prevent us from submitting the manuscript.

Ethical approval

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninan, N., Pidhatika, B., Bright, R. et al. Advancing sustainable technologies: plasma-engineered bioplastics with silver nanoparticle integration. J Mater Sci 59, 9003–9020 (2024). https://doi.org/10.1007/s10853-024-09673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09673-7

Navigation