Skip to main content
Log in

Low-temperature coating of Mn2O3–MoS2 micro-nano-heterostructure anode as an efficient catalyst for water splitting applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Binder-free Mn2O3–MoS2 hybrid composites (HCs) were fabricated using a room temperature kinetic spray process under low-pressure conditions with various weight ratios of Mn2O3-to-MoS2 (1:1, 1:2, and 1:4). The effect of the composition ratio on the electrocatalytic activity of Mn2O3–MoS2 HCs toward the oxygen evolution reaction (OER) in an alkaline medium was investigated. The deposited MoS2 exhibits microrods (MRs) morphology, while pure Mn2O3 exhibits nanoflakes (NFs) morphology. The Mn2O3–MoS2 HCs exhibited NFs-decorated MR morphology. Multilayer heterostructure morphology significantly improves the interfacial synergy between various electroactive species that were verified using various spectroscopic techniques such as micro-Raman and X-ray photoemission spectra. As the MoS2 content in the Mn2O3–MoS2 HCs increased, the interfacial charge transfer kinetics associated with the reduction in the oxidation barrier potential improved. The Mn2O3–MoS2 HCs with a 1:4 ratio demonstrated the optimum combination for OER with the smallest overpotential of 290 mV @ 10 mA cm−2 and Tafel slope of 41 mV dec−1. The long-term OER stability of the fabricated electrocatalysts was verified using chronopotentiometry techniques for 50 h at 50 mA cm−2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Abd-Elrahim A, Chun D-M (2021) Heterostructured Mn3O4-2D material nanosheets: one-step vacuum kinetic spray deposition and non-enzymatic H2O2 sensing. Ceram Int 47:35111

    Article  CAS  Google Scholar 

  2. Abd-Elrahim A, Chun D-M (2023) Room-temperature coating of Mn3O4–2D material (graphene and MoS2) nanocomposites for improving oxygen evolution reaction kinetics. Mater Res Bull 166:112348

    Article  CAS  Google Scholar 

  3. Li P, Zhao R, Chen H, Wang H, Wei P, Huang H, Liu Q, Li T, Shi X, Zhang Y (2019) Recent advances in the development of water oxidation electrocatalysts at mild pH. Small 15:1805103

    Article  Google Scholar 

  4. Bôas NV, Junior JBS, Varanda LC, Machado SAS, Calegaro ML (2019) Bismuth and cerium doped cryptomelane-type manganese dioxide nanorods as bifunctional catalysts for rechargeable alkaline metal-air batteries. Appl Catal B Environ 258:118014

    Article  Google Scholar 

  5. Yan S, Xue Y, Li S, Shao G, Liu Z (2019) Enhanced bifunctional catalytic activity of manganese oxide/perovskite hierarchical core-shell materials by adjusting the interface for metal-air batteries. ACS Appl Mater Interfaces 11:25870

    Article  CAS  PubMed  Google Scholar 

  6. Singu BS, Goda ES, Yoon KR (2021) Carbon Nanotube-Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials. J Ind Eng Chem 97:239

    Article  CAS  Google Scholar 

  7. Chen L, Hao C, Zhang Y, Wei Y, Dai L, Cheng J, Zhang H, Ci L (2021) Guest ions pre-intercalation strategy of manganese-oxides for supercapacitor and battery applications. J Energy Chem 60:480

    Article  CAS  Google Scholar 

  8. Zhao Q, Song A, Ding S, Qin R, Cui Y, Li S, Pan F (2020) Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Adv Mater 32:e2002450

    Article  PubMed  Google Scholar 

  9. Wu B, Xie Y, Meng Y, Qian C, Chen Y, Yuan A, Guo X, Yang H, Wan S, Lin S (2019) Construction of unique heterogeneous cobalt–manganese oxide porous microspheres for the assembly of long-cycle and high-rate lithium ion battery anodes. J Mater Chem A 7:6149

    Article  CAS  Google Scholar 

  10. Wu P, Jin X, Qiu Y, Ye D (2021) Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environ Sci Technol 55:4268

    Article  CAS  PubMed  Google Scholar 

  11. Chutia B, Hussain N, Puzari P, Jampaiah D, Bhargava SK, Matus EV, Ismagilov IZ, Kerzhentsev M, Bharali P (2021) Unraveling the role of CeO2 in stabilization of multivalent Mn species on α-MnO2/Mn3O4/CeO2/C surface for enhanced electrocatalysis. Energy Fuels 35:10756

    Article  CAS  Google Scholar 

  12. Wang H, Sun Y, Li Z, Li H, Guo P (2019) Electrocapacitive behavior of colloidal nanocrystal assemblies of manganese ferrite in multivalent ion electrolytes. Colloids Surf A 572:326

    Article  CAS  Google Scholar 

  13. Chai C, Fan C, Liu J, Zhang X, Wang Y, Li R, Duan D, Wang Y (2019) Photoinduced g–C3N4–promoted Mn2+/Mn3+/Mn4+ redox cycles for activation of peroxymonosulfate. J Solid State Chem 277:466

    Article  CAS  Google Scholar 

  14. Kuo C-H, Mosa IM, Poyraz AS, Biswas S, El-Sawy AM, Song W, Luo Z, Chen S-Y, Rusling JF, He J (2015) Robust mesoporous manganese oxide catalysts for water oxidation. ACS Catal 5:1693

    Article  CAS  Google Scholar 

  15. Wang X, Huang G, Pan Z, Kang S, Ma S, Shen PK, Zhu J (2022) One-pot synthesis of Mn2P-Mn2O3 heterogeneous nanoparticles in a P, N-doped three-dimensional porous carbon framework as a highly efficient bifunctional electrocatalyst for overall water splitting. Chem Eng J 428:131190

    Article  CAS  Google Scholar 

  16. Ramírez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S (2014) Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C 118:14073

    Article  Google Scholar 

  17. Wang Y, Hu T, Chen Y, Yuan H, Qiao Y (2020) Crystal facet-dependent activity of α-Mn2O3 for oxygen reduction and oxygen evolution reactions. Int J Hydrogen Energy 45:22744

    Article  CAS  Google Scholar 

  18. Kölbach M, Fiechter S, Van De Krol R, Bogdanoff P (2017) Evaluation of electrodeposited α-Mn2O3 as a catalyst for the oxygen evolution reaction. Catal Today 290:2

    Article  Google Scholar 

  19. Dai Y, Men Y, Wang J, Liu S, Li S, Li Y, Wang K, Li Z (2021) Tailoring the morphology and crystal facet of Mn3O4 for highly efficient catalytic combustion of ethanol. Colloids Surf A 627:127216

    Article  CAS  Google Scholar 

  20. Hu C, Zhang L, Huang Z, Zhu W, Zhao Z-J, Gong J (2019) Facet-evolution growth of Mn3O4@CoxMn3-xO4 electrocatalysts on Ni foam towards efficient oxygen evolution reaction. J Catal 369:105

    Article  CAS  Google Scholar 

  21. Liu P-P, Zheng Y-Q, Zhu H-L, Li T-T (2019) Mn2O3 hollow nanotube arrays on Ni foam as efficient supercapacitors and electrocatalysts for oxygen evolution reaction. ACS Appl Nano Mater 2:744

    Article  CAS  Google Scholar 

  22. Wang S, Wang H, Huang C, Ye P, Luo X, Ning J, Zhong Y, Hu Y (2021) Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N. Appl Catal B 298:120512

    Article  CAS  Google Scholar 

  23. Yan L, Xie B, Yang C, Wang Y, Ning J, Zhong Y, Hu Y (2023) Engineering self-supported hydrophobic-aerophilic air cathode with CoS/Fe3S4 nanoparticles embedded in S, N Co-doped carbon plate arrays for long-life rechargeable Zn–Air batteries. Adv Energy Mater 13:2204245

    Article  CAS  Google Scholar 

  24. Rebekah A, Anantharaj S, Viswanthan C, Ponpandian N (2020) Zn-substituted MnCo2O4 nanostructure anchored over rGO for boosting the electrocatalytic performance towards methanol oxidation and oxygen evolution reaction (OER). Int J Hydrogen Energy 45:14713

    Article  CAS  Google Scholar 

  25. Kaneti YV, Guo Y, Septiani NLW, Iqbal M, Jiang X, Takei T, Yuliarto B, Alothman ZA, Golberg D, Yamauchi Y (2021) Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction. Chem Eng J 405:126580

    Article  CAS  Google Scholar 

  26. Yang B, Chang X, Ding X, Ma X, Zhang M (2022) One-dimensional Ni2P/Mn2O3 nanostructures with enhanced oxygen evolution reaction activity. J Colloid Interf Sci 623:196

    Article  CAS  Google Scholar 

  27. Xu Q, Qin W, Tian W, Chu JF (2020) A highly efficient Co3V2O8/MoS2/carbon cloth nanocomposite bifunctional electrocatalyst for overall water splitting. Chem Sel 5:14276

    CAS  Google Scholar 

  28. Roy D, Malik MS, Chun D-M, Abd-Elrahim AG (2024) Facile one-step deposition of nanosized Ni(OH)2–MoS2 heterostructure electrodes for efficient oxygen evolution reaction. J Phys Chem Solids 186:111836

    Article  CAS  Google Scholar 

  29. Loh JY, Yap FM, Ong W-J (2024) 2D/2D heterojunction interface: Engineering of 1T/2H MoS2 coupled with Ti3C2Tx heterostructured electrocatalysts for pH-universal hydrogen evolution. J Mater Sci Technol 179:86

    Article  Google Scholar 

  30. Cao J, Teng F, Zhang Y, Huang J, Liu X, Zhou Q, Zhang C, Guan J (2024) Defect-rich 1T-MoS2 nanosheets towards efficient electrochemical hydrogen evolution by simultaneous phase and defect engineering. Int J Hydrogen Energy 51:529

    Article  CAS  Google Scholar 

  31. Abd-Elrahim AG, Chun D-M (2021) Facile one-step deposition of ZnO-graphene nanosheets hybrid photoanodes for enhanced photoelectrochemical water splitting. J Alloy Compd 870:159430

    Article  CAS  Google Scholar 

  32. Abd-Elrahim AG, Chun D-M (2020) Fabrication of efficient nanostructured Co3O4-Graphene bifunctional catalysts: Oxygen evolution, hydrogen evolution, and H2O2 sensing. Ceram Int 46:23479

    Article  CAS  Google Scholar 

  33. Chun D-M, Ahn S-H (2011) Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system. Acta Mater 59:2693

    Article  CAS  Google Scholar 

  34. Abd-Elrahim AG, Chun D-M (2021) Room-temperature deposition of ZnO-graphene nanocomposite hybrid photocatalysts for improved visible-light-driven degradation of methylene blue. Ceram Int 47:12812

    Article  CAS  Google Scholar 

  35. Li Y, Li FM, Meng XY, Li SN, Zeng JH, Chen Y (1913) Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. Acs Catal 2018:8

    Google Scholar 

  36. Li XM, Hao XG, Abudula A, Guan GQ (2016) Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4:11973

    Article  CAS  Google Scholar 

  37. Abd-Elrahim A, Chun D-M (2022) One-step mechanical exfoliation and deposition of layered materials (graphite, MoS2, and BN) by vacuum-kinetic spray process. Vacuum 196:110732

    Article  CAS  Google Scholar 

  38. Hong F, Yue B, Hirao N, Liu Z, Chen B (2017) Significant improvement in Mn(2)O(3) transition metal oxide electrical conductivity via high pressure. Sci Rep 7:44078

    Article  PubMed  PubMed Central  Google Scholar 

  39. Niu X, Wei H, Tang K, Liu W, Zhao G, Yang Y (2015) Solvothermal synthesis of 1D nanostructured Mn2O3: effect of Ni2+ and Co2+ substitution on the catalytic activity of nanowires. Rsc Adv 5:66271

    Article  CAS  Google Scholar 

  40. Abd-Elrahim A, Chun D-M (2022) Kinetically induced one-step heterostructure formation of Co3O4-Ni (OH) 2-graphene ternary nanocomposites to enhance oxygen evolution reactions. J Alloy Compd 906:164159

    Article  CAS  Google Scholar 

  41. Abd-Elrahim A, Chun D-M (2022) Room-temperature fabrication of a heterostructure Cu2O@ CuO nanosheet electrocatalyst for non-enzymatic detection of glucose and H2O2. J Electroanal Chem 924:116874

    Article  CAS  Google Scholar 

  42. Schlucker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Edit 53:4756

    Article  Google Scholar 

  43. Arif AFM, Al-Athel KS, Mostaghimi J (2017). In: Hashmi MSJ (ed) Comprehensive materials finishing. Elsevier, Oxford

    Google Scholar 

  44. Frey GL, Tenne R, Matthews MJ, Dresselhaus M, Dresselhaus G (1999) Raman and resonance Raman investigation of MoS2 nanoparticles. Phys Rev B 60:2883

    Article  CAS  Google Scholar 

  45. Najmaei S, Liu Z, Ajayan PM, Lou J (2012) Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl Phys Lett 100:013106

    Article  Google Scholar 

  46. Chen J, Wang C (1974) Second order Raman spectrum of MoS2. Solid State Commun 14:857

    Article  CAS  Google Scholar 

  47. Sekine T, Uchinokura K, Nakashizu T, Matsuura E, Yoshizaki R (1984) Dispersive Raman mode of layered compound 2H-MoS2 under the resonant condition. J Phys Soc Jpn 53:811

    Article  CAS  Google Scholar 

  48. Wieting T, Verble J (1971) Infrared and Raman studies of long-wavelength optical phonons in hexagonal Mo S2. Phys Rev B 3:4286

    Article  Google Scholar 

  49. Stacy AM, Hodul DT (1985) Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges. J Phys Chem Solids 46:405

    Article  CAS  Google Scholar 

  50. Chen Z, Lai J, Shek C (2006) Influence of grain size on the vibrational properties in Mn2O3 nanocrystals. J Non-Cryst Solids 352:3285

    Article  CAS  Google Scholar 

  51. Luo Y, Deng Y-Q, Mao W, Yang X-J, Zhu K, Xu J, Han Y-F (2012) Probing the surface structure of α-Mn2O3 nanocrystals during CO oxidation by operando Raman spectroscopy. J Phys Chem C 116:20975

    Article  CAS  Google Scholar 

  52. Xu J, Deng Y-Q, Luo Y, Mao W, Yang X-J, Han Y-F (2013) Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst. J Catal 300:225

    Article  CAS  Google Scholar 

  53. Stinner C, Prins R, Weber T (2000) Formation, structure, and HDN activity of unsupported molybdenum phosphide. J Catal 191:438

    Article  CAS  Google Scholar 

  54. Saha D, Selvaganapathy PR, Kruse P (2020) Peroxide-induced tuning of the conductivity of nanometer-thick MoS2 films for solid-state sensors. ACS Appl Nano Mater 3:10864

    Article  CAS  Google Scholar 

  55. Fujita S, Sato H, Motozuka S (2023) Deformation type during the ball milling process: a comparative study of the microstructures formed by ball milling, uniaxial compression, and rolling. Powder Technol 426:118598

    Article  CAS  Google Scholar 

  56. Tuschel D (2019) Stress, strain, and Raman spectroscopy. Spectroscopy 34:10

    Google Scholar 

  57. Abd-Elrahim A, Chun D-M (2020) Facile one-step deposition of Co3O4-MoS2 nanocomposites using a vacuum kinetic spray process for non-enzymatic H2O2 sensing. Surf Interfaces 21:100748

    Article  CAS  Google Scholar 

  58. Camacho-López MA, Escobar-Alarcón L, Picquart M, Arroyo R, Córdoba G, Haro-Poniatowski E (2011) Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation. Opt Mater 33:480

    Article  Google Scholar 

  59. Spevack P, Mcintyre N (1992) Thermal reduction of molybdenum trioxide. J Phys Chem 96:9029

    Article  CAS  Google Scholar 

  60. Cheng S, Yang L, Chen D, Ji X, Jiang Z-J, Ding D, Liu M (2014) Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy. Nano Energy 9:161

    Article  CAS  Google Scholar 

  61. Bernardini S, Bellatreccia F, Della Ventura G, Sodo A (2021) A reliable method for determining the oxidation state of manganese at the microscale in Mn oxides via Raman spectroscopy. Geostand Geoanal Res 45:223

    Article  CAS  Google Scholar 

  62. Huang Y, He W, Zhang P, Lu X (2018) Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn-MnO2 batteries. Funct Mater Lett 11:1840006

    Article  CAS  Google Scholar 

  63. Julien C, Massot M, Rangan S, Lemal M, Guyomard D (2002) Study of structural defects in γ-MnO2 by Raman spectroscopy. J Raman Spectrosc 33:223

    Article  CAS  Google Scholar 

  64. Cross J, Martin J, Pope L, Koontz S (1990) Atomic oxygen-MoS2 chemical interactions. Surf Coat Technol 42:41

    Article  CAS  Google Scholar 

  65. Wang H, Skeldon P, Thompson G (1997) XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions. Surf Coat Technol 91:200

    Article  CAS  Google Scholar 

  66. Zhang J, Wang T, Liu P, Liu S, Dong R, Zhuang X, Chen M, Feng X (2016) Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ Sci 9:2789

    Article  CAS  Google Scholar 

  67. Yang Y, Zhang K, Lin H, Li X, Chan HC, Yang L, Gao Q (2017) MoS2–Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal 7:2357

    Article  CAS  Google Scholar 

  68. Xiong X, Luo W, Hu X, Chen C, Qie L, Hou D, Huang Y (2015) Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci Rep 5:1

    Article  CAS  Google Scholar 

  69. Mcintyre N, Zetaruk D (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521

    Article  CAS  Google Scholar 

  70. Oku M, Hirokawa K, Ikeda S (1975) X-ray photoelectron spectroscopy of manganese—oxygen systems. J Electron Spectrosc Relat Phenom 7:465

    Article  CAS  Google Scholar 

  71. Zhang X, Li H, Hou F, Yang Y, Dong H, Liu N, Wang Y, Cui L (2017) Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl Surf Sci 411:27

    Article  CAS  Google Scholar 

  72. Li Z-Y, Akhtar MS, Bui PT, Yang O-B (2017) Predominance of two dimensional (2D) Mn2O3 nanowalls thin film for high performance electrochemical supercapacitors. Chem Eng J 330:1240

    Article  CAS  Google Scholar 

  73. Xu J, Sun Y, Lu M, Wang L, Zhang J, Qian J, Kim EJ (2017) Fabrication of porous Mn2O3 microsheet arrays on nickel foam as high-rate electrodes for supercapacitors. J Alloy Compd 717:108

    Article  CAS  Google Scholar 

  74. Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034

    Article  CAS  PubMed  Google Scholar 

  75. Lyle H, Singh S, Paolino M, Vinogradov I, Cuk T (2021) The electron-transfer intermediates of the oxygen evolution reaction (OER) as polarons by in situ spectroscopy. Phys Chem Chem Phys 23:24984

    Article  CAS  PubMed  Google Scholar 

  76. Koroteev V, Bulusheva L, Asanov I, Shlyakhova E, Vyalikh D, Okotrub A (2011) Charge transfer in the MoS2/carbon nanotube composite. J Phys Chem C 115:21199

    Article  CAS  Google Scholar 

  77. Lin Y-K, Chen R-S, Chou T-C, Lee Y-H, Chen Y-F, Chen K-H, Chen L-C (2016) Thickness-dependent binding energy shift in few-layer MoS2 grown by chemical vapor deposition. ACS Appl Mater Interfaces 8:22637

    Article  CAS  PubMed  Google Scholar 

  78. Rehman J, Fan X, Laref A, Dinh VA, Zheng W (2021) Potential anodic applications of 2D MoS2 for K-ion batteries. J Alloy Compd 865:158782

    Article  CAS  Google Scholar 

  79. Qin Y, Zhang Y, Wang J, Zhang J, Zhai Y, Wang H, Li D (2020) Heterogeneous structured Bi2S3/MoS2@ NC nanoclusters: exploring the superior rate performance in sodium/potassium ion batteries. ACS Appl Mater Interfaces 12:42902

    Article  CAS  PubMed  Google Scholar 

  80. Share K, Cohn AP, Carter RE, Pint CL (2016) Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. Nanoscale 8:16435

    Article  CAS  PubMed  Google Scholar 

  81. Li F, Zou J, Cao L, Li Z, Gu S, Liu Y, Zhang J, Liu H, Lu Z (2019) In situ study of K+ electrochemical intercalating into MoS2 flakes. J Phys Chem C 123:5067

    Article  CAS  Google Scholar 

  82. Cross AD, Morel A, Hollenkamp TF, Donne SW (2011) Chronoamperometric versus galvanostatic preparation of manganese oxides for electrochemical capacitors. J Electrochem Soc 158:A1160

    Article  CAS  Google Scholar 

  83. Xie M, Yang L, Ji Y, Wang Z, Ren X, Liu Z, Asiri AM, Xiong X, Sun X (2017) An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale 9:16612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2024 Research Fund of the University of Ulsan.

Author information

Authors and Affiliations

Authors

Contributions

AGA contributed to conceptualization, data curation, methodology, formal analysis, investigation, validation, writing—original draft, and writing—review and editing. DR and MMS contributed to conceptualization, methodology, and investigation. DC contributed to conceptualization, investigation, funding acquisition, project administration, validation, writing—original draft, and writing—review and editing.

Corresponding author

Correspondence to Doo-Man Chun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Data and code availability

Data will be available upon request.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

SEM images, EDS spectra of powder; EDS mapping of deposited nanostructured thin films, Raman spectra of micron powder; XPS survey spectra and high-resolution XPS scans of S 2p, Mo 3d, O1s, and Mn 2p of nanostructured films of Mn2O3, MoS2, and Mn2O3–MoS2 NCs; CV plots from to 0.1 V vs. Hg/HgO and the corresponding ECSA; XPS after OER stability test, and OER performance comparison table.

Supplementary file1 (DOCX 14412 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elrahim, A.G., Roy, D., Malik, M.S. et al. Low-temperature coating of Mn2O3–MoS2 micro-nano-heterostructure anode as an efficient catalyst for water splitting applications. J Mater Sci 59, 7332–7355 (2024). https://doi.org/10.1007/s10853-024-09620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09620-6

Navigation