Skip to main content
Log in

Effect of grain orientation on the corrosion behavior of AZ31 alloy sheet

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Modifying the gain orientation is considered a crucial method for enhancing the corrosion resistance of Mg alloys. This study aims to improve the corrosion properties of AZ31 alloy sheet through pre-stretch deformation, specifically compression (6.8%) along the extrusion direction (ED). To eliminate the twin structure, a recrystallization annealing process was performed after the pre-stretch deformation. To investigate the corrosion performance of Mg alloys, we conducted electrochemical and hydrogen evolution tests, which provided insights into the influence of microstructure on the corrosion resistance of Mg alloys. The results indicate that the corrosion resistance was altered by the presence of twin grain boundaries that formed after pre-stretch deformation. Furthermore, the recrystallized texture with//ED orientation exhibited the highest corrosion resistance, underscoring the significant role played by grain orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Atrens A, Johnston S, Shi Z, Dargusch MS (2018) Understanding Mg corrosion inthe body for biodegradable medical implants. J Scr Mater 154:92–100. https://doi.org/10.1016/j.scriptamat.2018.05.021

    Article  CAS  Google Scholar 

  2. Esmaily M, Svensson J, Fajardo S, Birbilis N, Frankel G et al (2017) Fundamentals and advances in magnesium alloy corrosion. J Progr Mater Sci 89:92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011

    Article  CAS  Google Scholar 

  3. Yang Q, Jiang B, Song B, Yu Z, He D, Chai Y, Zhang J, Pan F (2022) The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet. J Magnes Alloys 10:411–422. https://doi.org/10.1016/j.jma.2020.08.005

    Article  CAS  Google Scholar 

  4. Zhou S, Peng P, Zhang J, Liu T, Pan F (2021) Study on the effects of manganese on the grain structure and mechanical properties of Mg-0.5Ce alloy. J Mater Sci Eng A 821:141567. https://doi.org/10.1016/j.msea.2021.141567

    Article  CAS  Google Scholar 

  5. Cao F, Song GL, Atrens A (2016) Corrosion and passivation of magnesium alloys. J Corros Sci 111:835–845. https://doi.org/10.1016/j.corsci.2016.05.041

    Article  CAS  Google Scholar 

  6. Wang G, Huang G, Huang Y, Zhang C, Jiang B et al (2020) Achieving high ductility in hot-rolled Mg-xZn-0.2Ca-0.2Ce sheet by Zn addition. J Miner Metals Mater Soc 72:1607–1618. https://doi.org/10.1007/s11837-020-04038-2

    Article  CAS  Google Scholar 

  7. Sw X, Cx Li, Li C, Xt Z, Hx L (2022) Effect of Sm content on microstructure evolution and mechanical properties of as-cast Mg− 6Al− 2Sr alloys. J Central South Univ 29:3811–3824. https://doi.org/10.1007/s11771-022-5192-5

    Article  CAS  Google Scholar 

  8. Zengin H, Turen Y (2020) Effect of Y addition on microstructure and corrosion behavior of extruded Mg–Zn–Nd–Zr alloy. J Magnes Alloys 8:640–653. https://doi.org/10.1016/j.jma.2020.06.004

    Article  CAS  Google Scholar 

  9. He J, Jiang B, Xu J, Zhang J, Yu X et al (2017) Effect of texture symmetry on mechanical performance and corrosion resistance of magnesium alloy sheet. J Alloys Compnd 723:213–224. https://doi.org/10.1016/j.jallcom.2017.06.269

    Article  CAS  Google Scholar 

  10. Liu J, Han EH, Song Y, Shan D (2018) Effect of twins on the corrosion behavior of Mg–5Y–7Gd–1Nd–0.5 Zr Mg alloy. J Alloys Compnd 757:356–363. https://doi.org/10.1016/j.jallcom.2018.05.105

    Article  CAS  Google Scholar 

  11. Wang C, Cai W, Sun C, Li X, Qian L, Jiang J (2022) Strain rate effects on mechanical behavior and microstructure evolution with the sequential strains of TWIP steel. J Mater Sci Eng A 835:142673. https://doi.org/10.1016/j.msea.2022.142673

    Article  CAS  Google Scholar 

  12. Aung NN, Zhou W (2010) Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. J Corros Sci 52:589–594. https://doi.org/10.1016/j.corsci.2009.10.018

    Article  CAS  Google Scholar 

  13. Li L, Liu W, Qi F, Wu D, Zhang Z (2022) Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys-a review. J Magnes Alloys 10:2334–2353. https://doi.org/10.1016/j.jma.2022.09.003

    Article  CAS  Google Scholar 

  14. Wang B, Xu D, Xin Y, Sheng L, Han E (2017) High corrosion resistance and weak corrosion anisotropy of an as-rolled Mg-3Al-1Zn (in wt%) alloy with strong crystallographic texture. J Sci Rep 7:16014. https://doi.org/10.1038/s41598-017-16351-z

    Article  CAS  Google Scholar 

  15. Zou G, Peng Q, Wang Y, Liu B (2015) The effect of extension twinning on the electrochemical corrosion properties of Mg–Y alloys. J Alloys Compnd 618:44–48. https://doi.org/10.1016/j.jallcom.2014.08.115

    Article  CAS  Google Scholar 

  16. Song GL (2012) The effect of texture on the corrosion behavior of AZ31 Mg alloy. J Jom 64:671–679. https://doi.org/10.1007/s11837-012-0341-1

    Article  CAS  Google Scholar 

  17. Zhao YC, Huang GS, Wang GG, Han TZ, Pan FS (2015) Influence of grain orientation on the corrosion behavior of rolled AZ31 magnesium alloy. J Acta Metall Sin 28:1387–1393. https://doi.org/10.1007/s40195-015-0337-2

    Article  CAS  Google Scholar 

  18. Luo Y, Deng Y, Guan L, Ye L, Guo X, Luo A (2020) Effect of grain size and crystal orientation on the corrosion behavior of as-extruded Mg-6Gd-2Y-0.2 Zr alloy. J Corros Sci 164:108338. https://doi.org/10.1016/j.corsci.2019.108338

    Article  CAS  Google Scholar 

  19. Yang Q, Jiang B, Wang L, Dai J, Zhang J, Pan F (2020) Enhanced formability of a magnesium alloy sheet via in-plane pre-strain paths. J Alloys Compnd 814:152278. https://doi.org/10.1016/j.jallcom.2019.152278

    Article  CAS  Google Scholar 

  20. Zhang C, Wu L, Liu H, Huang G, Jiang B et al (2020) Microstructure and corrosion behavior of Mg-Sc binary alloys in 35 wt% NaCl solution. J Corros Sci 174:108831. https://doi.org/10.1016/j.corsci.2020.108831

    Article  CAS  Google Scholar 

  21. He J, Jiang B, Yang Q, Xu J, Liu B, Pan F (2016) Improved the anisotropy of extruded Mg3Li3AlZn alloy sheet by presetting grain re-orientation and subsequent annealing. J Alloys Compnd 676:64–73. https://doi.org/10.1016/j.jallcom.2016.03.121

    Article  CAS  Google Scholar 

  22. Sun K, Zeng Y, Yin D, Gao F, Long L, Qian X, Wan Y, Quan G et al (2020) Quantitative study on slip/twinning activity and theoretical critical shear strength of Mg alloy with Y addition. J Mater Sci Eng A 792:139801. https://doi.org/10.1016/j.msea.2020.139801

    Article  CAS  Google Scholar 

  23. Zhang C, Wu L, Huang G, Liu K, Jiang B et al (2019) Influence of microalloying with Ca and Ce on the corrosion behavior of extruded Mg-3Al-1Zn. J Electrochem Soc 166:C445–C453. https://doi.org/10.1149/2.1191913jes

    Article  CAS  Google Scholar 

  24. Zhang C, Wu L, Huang GS, Wang GG, Jiang B, Pan FS (2021) Microstructure and corrosion properties of Mg–0.5 Zn–0.2 Ca–0.2 Ce alloy with different processing conditions. J Rare Metals 40:1924–1931. https://doi.org/10.1007/s12598-020-01478-2

    Article  CAS  Google Scholar 

  25. Wu L, Zhang G, Tang A, Liu Y, Atrens A, Pan F (2017) Communication—fabrication of protective layered double hydroxide films by conversion of anodic films on magnesium alloy. J Electrochem Soc 164:C339–C341. https://doi.org/10.1149/2.0921707jes

    Article  CAS  Google Scholar 

  26. Ma B, Tan C, Ouyang L, Shao H, Wang N, Zhu M (2022) Microstructure and discharge performance of Mg-La alloys as the anodes for primary magnesium-air batteries. J Alloys Compnd 918:165803. https://doi.org/10.1016/j.jallcom.2022.165803

    Article  CAS  Google Scholar 

  27. Song Y, Yang HB, Chai YF, Wang QH, Jiang B et al (2021) Corrosion and discharge behavior of Mg− xLa alloys (x= 0.0− 0.8) as anode materials. J Trans Nonferrous Met Soc China 31:1979–1992. https://doi.org/10.1016/S1003-6326(21)65631-5

    Article  CAS  Google Scholar 

  28. Wu L, Yang D, Zhang G, Zhang Z, Zhang S et al (2018) Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31. J Appl Surf Sci 431:177–186. https://doi.org/10.1016/j.apsusc.2017.06.244

    Article  CAS  Google Scholar 

  29. Zhang G, Wu L, Tang A, Chen X-B, Ma Y et al (2018) Growth behavior of MgAl-layered double hydroxide films by conversion of anodic films on magnesium alloy AZ31 and their corrosion protection. J Appl Surf Sci 456:419–429. https://doi.org/10.1016/j.apsusc.2018.06.085

    Article  CAS  Google Scholar 

  30. Yan D, Wang Y, Liu J, Song D, Zhang T et al (2020) Self-healing system adapted to different pH environments for active corrosion protection of magnesium alloy. J Alloys Compnd 824:153918. https://doi.org/10.1016/j.jallcom.2020.153918

    Article  CAS  Google Scholar 

  31. Zhang H, Yang M, Hou M, Wang L, Zhang Q et al (2019) Effect of pre-existing 10 2} extension twins on mechanical properties, microstructure evolution and dynamic recrystallization of AZ31 Mg alloy during uniaxial compression. J Mater Sci Eng 744:456–470. https://doi.org/10.1016/j.msea.2018.11.146

    Article  CAS  Google Scholar 

  32. Gerashi E, Alizadeh R, Langdon TG (2022) Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: a review. J Magnes Alloys 10:313–325. https://doi.org/10.1016/j.jma.2021.09.009

    Article  CAS  Google Scholar 

  33. Lu K (2016) Stabilizing nanostructures in metals using grain and twin boundary architectures. J Nat Rev Mater 1:1–13. https://doi.org/10.1038/natrevmats.2016.19

    Article  CAS  Google Scholar 

  34. Wang B, Liu Y, Li Z, Li Z (2016) Association of indoor air pollution from coal combustion with influenza-like illness in housewives. J Environ Pollut 216:646–652. https://doi.org/10.1016/j.envpol.2016.06.026

    Article  CAS  Google Scholar 

  35. Wang B, Xu D, Dong J, Ke W (2014) Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg–3Al–1Zn (wt%) bar. J Scr Mater 88:5–8. https://doi.org/10.1016/j.scriptamat.2014.06.015

    Article  CAS  Google Scholar 

  36. Li X, Xie H, Yang B (2020) Anisotropic electronic transport properties of Ag-oped Mg3Sb2 crystal prepared by directional solidification. J Appl Phys 127:195104. https://doi.org/10.1063/5.0006340

    Article  CAS  Google Scholar 

  37. Robson J, Barnett M (2018) The effect of precipitates on twinning in magnesium alloys. J Adv Eng Mater 21:1800460. https://doi.org/10.1002/adem.201800460

    Article  CAS  Google Scholar 

  38. Chen J, Tan L, Yu X, Etim IP, Ibrahim M, Yang K (2018) Mechanical properties of magnesium alloys for medical application: a review. J Mech Behav Biomed Mater 87:68–79. https://doi.org/10.1016/j.jmbbm.2018.07.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (52271092) and Chongqing Municipal Education Commission (CY231001).

Author information

Authors and Affiliations

Authors

Contributions

QY contributed to methodology, writing—review and editing, and experimental design. DZ performed data curation and writing—review and editing. ZC performed data curation, viewpoints extraction, and writing—review and editing, JZ performed supervision and writing—review and editing. CZ contributed to conceptualization and writing—review and editing. HY was involved in investigation and supervision.

Corresponding authors

Correspondence to Jiawei Zhang or Cheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Peiyao Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Zhang, D., Chen, Z. et al. Effect of grain orientation on the corrosion behavior of AZ31 alloy sheet. J Mater Sci 59, 7119–7130 (2024). https://doi.org/10.1007/s10853-024-09582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09582-9

Navigation