Skip to main content
Log in

Solvothermally synthesized bismuth telluride hexagonal platelets as an efficient anode material for lithium- and sodium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study explores the capabilities of solvothermally synthesized bismuth telluride (Bi2Te3) hexagonal platelets as a promising anode material for both Li-ion and Na-ion batteries. Bi2Te3 anode material exhibits a high initial discharge capacity of 837 mA h g−1 at a current density of 100 mA g−1 against Li metal whereas, an initial discharge capacity of 678 mA h g−1 is observed at a current density of 20 mA g−1 for the same against the Na metal. The Li- and Na-storage mechanism in Bi2Te3 platelets has been investigated by using both galvanostatic charge–discharge and cyclic voltammetry measurements. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy techniques have been used to examine the structural characteristics, surface morphology, and lattice vibrational modes of Bi2Te3 hexagonal platelets. Further, FTIR spectroscopy was employed to determine the presence of functional groups while X-ray photoelectron spectroscopy was employed for the elemental analysis of Bi2Te3 sample.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Data generated and analyzed during the study will be made available from the corresponding author upon reasonable request.

References

  1. Bin CC, Tsai CY, Chen KT, Tuan HY (2021) Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode. ACS Appl Energy Mater 4:3160–3168. https://doi.org/10.1021/acsaem.0c02932

    Article  CAS  Google Scholar 

  2. Geng H, Zhou Q, Zheng J, Gu H (2014) Preparation of porous and hollow Fe3O4@C spheres as an efficient anode material for a high-performance Li-ion battery. RSC Adv 4:6430–6434. https://doi.org/10.1039/c3ra45300f

    Article  CAS  Google Scholar 

  3. O’Heir J (2017) Building better batteries. Mech Eng 139(1):10–11

    Google Scholar 

  4. Fang C, Huang Y, Zhang W et al (2016) Routes to high energy cathodes of sodium-ion batteries. Adv Energy 6(5):1501727. https://doi.org/10.1002/aenm.201501727

    Article  CAS  Google Scholar 

  5. Du Y, Zhang B, Zhang W et al (2021) Interfacial engineering of Bi2Te3/Sb2Te3 heterojunction enables high–energy cathode for aluminum batteries. Energy Storage Mater 38:231–240. https://doi.org/10.1016/j.ensm.2021.03.012

    Article  Google Scholar 

  6. Xu J, Ma J, Fan Q et al (2017) Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv Mater 29(28):1606454. https://doi.org/10.1002/adma.201606454

    Article  CAS  Google Scholar 

  7. Shi L, Zhao T (2017) Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J Mater Chem A Mater 5:3735–3758. https://doi.org/10.1039/c6ta09831b

    Article  CAS  Google Scholar 

  8. Zhang C, Wang A, Zhang J et al (2018) 2D materials for lithium/sodium metal anodes. Adv Energy 8(34):1802833. https://doi.org/10.1002/aenm.201802833

    Article  CAS  Google Scholar 

  9. Liu J, Bao Z, Cui Y et al (2019) Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy 4:180–186. https://doi.org/10.1038/s41560-019-0338-x

    Article  CAS  Google Scholar 

  10. Khatua S, Rao YB, Achary KR, Patro LN (2023) Li-ion transport studies of NASICON-type LiZr2(PO4)3 solid electrolyte crystallizing in rhombohedral structure at room temperature. Surf Interfaces 41:103212. https://doi.org/10.1016/j.surfin.2023.103212

    Article  CAS  Google Scholar 

  11. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614. https://doi.org/10.1039/c6cs00776g

    Article  CAS  PubMed  Google Scholar 

  12. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958. https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  13. Bhaskara Rao Y, Achary KR, Patro LN (2022) Enhanced electrochemical performance of the Na3V2(PO4)3/C cathode material upon doping with Mn/Fe for Na-ion batteries. ACS Omega 7:48192–48201. https://doi.org/10.1021/acsomega.2c06261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Z, Zhong W, Cheng D, Zhang H (2021) One-step large-scale fabrication of Bi@N-doped carbon for ultrahigh-rate and long-life sodium-ion battery anodes. J Mater Sci 56:11000–11010. https://doi.org/10.1007/s10853-021-05978-z

    Article  CAS  Google Scholar 

  15. Xiao B, Rojo T, Li X (2019) Hard carbon as sodium-ion battery anodes: progress and challenges. Chemsuschem 12:133–144. https://doi.org/10.1002/cssc.201801879

    Article  CAS  PubMed  Google Scholar 

  16. Mao J, Zhou T, Zheng Y et al (2018) Two-dimensional nanostructures for sodium-ion battery anodes. J Mater Chem A Mater 6:3284–3303. https://doi.org/10.1039/c7ta10500b

    Article  CAS  Google Scholar 

  17. Wang N, Chu C, Xu X et al (2018) Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv Energy Mater 8(27):1801888. https://doi.org/10.1002/aenm.201801888

    Article  CAS  Google Scholar 

  18. Yang J, Zhou X, Wu D et al (2016) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater. 29(6):1–5. https://doi.org/10.1002/adma.201604108

    Article  CAS  Google Scholar 

  19. Li W, An C, Guo H et al (2019) In situ synthesis of 1D mesoporous MnO@C nanorods for high performance Li-ion batteries. ACS Sustain Chem Eng 7:139–146. https://doi.org/10.1021/acssuschemeng.8b01782

    Article  CAS  Google Scholar 

  20. Weiya Q, Zhu H, Yu Jin S et al (2023) High-performance lithium-ion batteries with different hollow-degree Fe3O4@C hollow nanostructures. Appl Surf Sci 608:155093. https://doi.org/10.1016/j.apsusc.2022.155093

    Article  CAS  Google Scholar 

  21. Pang S, Hu Z, Fan C et al (2022) Insights into the sodium storage mechanism of Bi2Te3nanosheets as superior anodes for sodium-ion batteries. Nanoscale 14:1755–1766. https://doi.org/10.1039/d1nr07960c

    Article  CAS  PubMed  Google Scholar 

  22. Sha M, Zhang H, Nie Y et al (2017) Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J Mater Chem A 5:6277–6283. https://doi.org/10.1039/C7TA00690J

    Article  CAS  Google Scholar 

  23. Orzech MW, Mazzali F, McGettrick JD et al (2017) Synergic effect of Bi, Sb and Te for the increased stability of bulk alloying anodes for sodium-ion batteries. J Mater Chem A 5:23198–23208. https://doi.org/10.1039/c7ta07648g

    Article  CAS  Google Scholar 

  24. Park CM, Yoon S, Il LS, Sohn HJ (2009) Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J Power Sources 186:206–210. https://doi.org/10.1016/j.jpowsour.2008.09.097

    Article  CAS  Google Scholar 

  25. Yang F, Yu F, Zhang Z et al (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem Eur J 22:2333–2338. https://doi.org/10.1002/chem.201503272

    Article  CAS  PubMed  Google Scholar 

  26. Yin H, Li Q, Cao M et al (2017) Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res 10:2156–2167. https://doi.org/10.1007/s12274-016-1408-z

    Article  CAS  Google Scholar 

  27. Zuo W, Zhu W, Zhao D et al (2016) Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ Sci 9:2881–2891. https://doi.org/10.1039/c6ee01871h

    Article  CAS  Google Scholar 

  28. Yuan Y, Hu T, Zhong X et al (2020) Highly sensitive photoelectrochemical biosensor based on quantum dots sensitizing Bi2Te3 nanosheets and DNA amplifying strategies. ACS Appl Mater Interfaces 12(20):22624–22629. https://doi.org/10.1021/acsami.0c04536

    Article  CAS  PubMed  Google Scholar 

  29. Wang M, Fu Q, Yan L et al (2019) Energy, Environmental, and Catalysis Applications Bi2Te3 topological insulator as a new and outstanding counter electrode material for high-efficiency and endurable flexible perovskite solar cells. ACS Appl Mater Interfaces 11(51):47868–47877. https://doi.org/10.1021/acsami.9b15320

    Article  CAS  PubMed  Google Scholar 

  30. Uddin I, Abzal SM, Kalyan K et al (2022) Starch-assisted synthesis of bi2s3 nanoparticles for enhanced dielectric and antibacterial applications. ACS Omega 7:42438–42445. https://doi.org/10.1021/acsomega.2c05593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wen S, Zhao J, Zhu Y et al (2020) Carbon-encapsulated Bi2Te3 derived from metal-organic framework as anode for highly durable lithium and sodium storage. J Alloys Compd 837:155536. https://doi.org/10.1016/j.jallcom.2020.155536

    Article  CAS  Google Scholar 

  32. Liu X, Si Y, Li K et al (2021) Exploring sodium storage mechanism of topological insulator Bi2Te3 nanosheets encapsulated in conductive polymer. Energy Storage Mater 41:255–263. https://doi.org/10.1016/j.ensm.2021.06.004

    Article  Google Scholar 

  33. Liu M, Yin S, Ren T et al (2021) Two-dimensional heterojunction electrocatalyst: Au-Bi2Te3 nanosheets for electrochemical ammonia synthesis. ACS Appl Mater Interfaces 13:47458–47464. https://doi.org/10.1021/acsami.1c11246

    Article  CAS  PubMed  Google Scholar 

  34. Teweldebrhan D, Goyal V, Balandin AA (2010) Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett 10:1209–1218. https://doi.org/10.1021/nl903590b

    Article  CAS  PubMed  Google Scholar 

  35. Masood KB, Jain N, Singh J (2020) Electrochemical performance of Bi2Te3/GO composite anode for LIB application. Int J Appl Ceram Technol 17:1422–1429. https://doi.org/10.1111/ijac.13445

    Article  CAS  Google Scholar 

  36. Gayner C, Menezes LT, Natanzon Y et al (2023) Development of nanostructured Bi2Te3 with high thermoelectric performance by scalable synthesis and microstructure manipulations. ACS Appl Mater Interfaces 15:13012–13024. https://doi.org/10.1021/acsami.2c21561

    Article  CAS  PubMed  Google Scholar 

  37. Chiba T, Yabuki H, Takashiri M (2023) High thermoelectric performance of flexible nanocomposite films based on Bi2Te3 nanoplates and carbon nanotubes selected using ultracentrifugation. Sci Rep 13(1):3010. https://doi.org/10.1038/s41598-023-30175-0

    Article  CAS  Google Scholar 

  38. Zhang Z, Sun M, Liu J et al (2022) Ultra-fast fabrication of Bi2Te3 based thermoelectric materials by flash-sintering at room temperature combining with spark plasma sintering. Sci Rep 12:10045. https://doi.org/10.1038/s41598-022-14405-5

    Article  CAS  Google Scholar 

  39. Ashfaq A, Sabugaa MM, Ben MM et al (2023) High thermoelectric power factor of Sr doped Bi2Te3 thin film through energy filtering effect. Int Commun Heat Mass Transf 143:106719. https://doi.org/10.1016/j.icheatmasstransfer.2023.106719

    Article  CAS  Google Scholar 

  40. Brunauer S, Emmett PH, Bergmann E, Weizmann A (1935) Communications to the editor. J Am Chem Soc 57:1754–1756. https://doi.org/10.1021/ja01312a077

    Article  CAS  Google Scholar 

  41. Mamur H, Dilmac OF, Korucu H, Bhuiyan MRA (2018) Cost-effective chemical solution synthesis of bismuth telluride nanostructure for thermoelectric applications. Micro Nano Lett 13:1117–1120. https://doi.org/10.1049/mnl.2018.0116

    Article  CAS  Google Scholar 

  42. Wu Z, Mu E, Wang Z et al (2019) Bi2Te3 nanoplates’ selective growth morphology on different interfaces for enhancing thermoelectric properties. Cryst Growth Des 19(7):3639–3646. https://doi.org/10.1021/acs.cgd.8b01632

    Article  CAS  Google Scholar 

  43. Majji M, Abzal SM, Jacob N et al (2024) Efficient photocatalytic green hydrogen production using crystalline elemental Boron nanostructures under visible light. Int J Hydrog Energy 56:338–347. https://doi.org/10.1016/j.ijhydene.2023.12.113

    Article  CAS  Google Scholar 

  44. Yu L, Tian P, Tang L et al (2023) Extended wavelength and enhanced sensitivity of PbS colloidal quantum dots/Bi2Te3 photodetector by band alignment engineering. Mater Des 229:111934. https://doi.org/10.1016/j.matdes.2023.111934

    Article  CAS  Google Scholar 

  45. Ahmad M, Agarwal K, Mehta BR (2020) An anomalously high Seebeck coefficient and power factor in ultrathin Bi2Te3film: spin-orbit interaction. J Appl Phys 128:035108. https://doi.org/10.1063/5.0007440

    Article  CAS  Google Scholar 

  46. Tarachand SM, Okram GS et al (2021) Enhanced thermoelectric performance of solution-grown Bi2Te3 nanorods. Mater Today Energy 21:100700. https://doi.org/10.1016/j.mtener.2021.100700

    Article  CAS  Google Scholar 

  47. Raju JM, Thomas KJ (2023) Topological insulator phases in polycrystalline Bi2Te3thin films. AIP Adv 13:025045. https://doi.org/10.1063/5.0136626

    Article  CAS  Google Scholar 

  48. Nour A, Hamida RS, El-Dissouky A et al (2023) One-pot facile synthesis of hexagonal Bi2Te3 nanosheets and its novel nanocomposites: characterization, anticancer, antibacterial, and antioxidant activities. Colloids Surf B Biointerfaces 225:113230. https://doi.org/10.1016/j.colsurfb.2023.113230

    Article  CAS  Google Scholar 

  49. Palanisamy G, Bhuvaneswari K, Bharathi G et al (2021) Improved photocatalytic performance of magnetically recoverable Bi2Te3/CdS/CuFe2O4 nanocomposite for MB dye under visible light exposure. Solid State Sci 115:106584. https://doi.org/10.1016/j.solidstatesciences.2021.106584

    Article  CAS  Google Scholar 

  50. Lee M, Fardis M, Papavassiliou G, Dcef DOI (2020) CrystEngComm 22(45):7918–7928. https://doi.org/10.1039/D0CE00719F

    Article  Google Scholar 

  51. Mahvi M, Delavari HH, Poursalehi R (2018) Rapid microwave-assisted synthesis of Bi2Te3 nanoflakes as an efficient contrast agent for X-ray computed tomography. Ceram Int 44:9679–9683. https://doi.org/10.1016/j.ceramint.2018.02.196

    Article  CAS  Google Scholar 

  52. Long B, Qiao Z, Zhang J et al (2019) Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium–sulfur batteries. J Mater Chem A Mater 7:11370–11378. https://doi.org/10.1039/C9TA01358J

    Article  CAS  Google Scholar 

  53. Ghosh A, Shukla S, Monisha M et al (2017) Sulfur co-polymer a new cathode structure for room temperature sodium-sulfur batteries. ACS Energy Lett 2(10):2478–2485. https://doi.org/10.1021/acsenergylett.7b00714

    Article  CAS  Google Scholar 

  54. Lu C, Luo M, Dong W et al (2023) Bi2Te3/Bi2Se3/Bi2S3 cascade heterostructure for fast-response and high-photoresponsivity photodetector and high-efficiency water splitting with a small bias voltage. Adv Sci 10:2205460. https://doi.org/10.1002/advs.202205460

    Article  CAS  Google Scholar 

  55. Wang Q, Wang S, Wei N et al (2022) Aqueous zinc-ion batteries based on a 2D layered Bi2Te3 cathode. Chem Eng J 450:138132. https://doi.org/10.1016/j.cej.2022.138132

    Article  CAS  Google Scholar 

  56. Nan J, Liu Y, Chao D et al (2023) Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction. Nano Res 16:6544–6551. https://doi.org/10.1007/s12274-022-5319-x

    Article  CAS  Google Scholar 

  57. Cunningham PT, Johnson SA, Cairns EJ (1973) Phase equilibria in lithium-chalcogen systems: III lithium-tellurium. J Electrochem Soc 120(3):328–330. https://doi.org/10.1149/1.2403448

    Article  CAS  Google Scholar 

  58. Tu F, Xie J, Cao G, Zhao X (2012) Self-Assembly of Bi2Te3-nanoplate/graphene-nanosheet hybrid by one-pot route and its improved Li-storage properties. Materials 5:1275–1284. https://doi.org/10.3390/ma5071275

    Article  CAS  PubMed Central  Google Scholar 

  59. Gillard CHR, Jana PP, Rawal A, Sharma N (2021) Electrochemical phase evolution of tetradymite-type Bi2Te3 in lithium, sodium and potassium ion half cells. J Alloys Compd 854:155621. https://doi.org/10.1016/j.jallcom.2020.155621

    Article  CAS  Google Scholar 

  60. Sahu SR, Parimala Devi D, Phanikumar VVN et al (2018) Tamarind seed skin-derived fiber-like carbon nanostructures as novel anode material for lithium-ion battery. Ionics 24:3413–3421. https://doi.org/10.1007/s11581-018-2498-2

    Article  CAS  Google Scholar 

  61. Cui J, Zheng H, Zhang Z et al (2021) Origin of anomalous high-rate Na-ion electrochemistry in layered bismuth telluride anodes. Matter 4:1335–1351. https://doi.org/10.1016/j.matt.2021.01.005

    Article  CAS  Google Scholar 

  62. Li D, Zhou J, Chen X, Song H (2018) Graphene-loaded Bi2Se3: a conversion–alloying-type anode material for ultrafast gravimetric and volumetric Na storage. ACS Appl Mater Interfaces 10:30379–30387. https://doi.org/10.1021/acsami.8b09538

    Article  CAS  PubMed  Google Scholar 

  63. Sun D, Zhang G, Li D et al (2019) A layered Bi2Te3 nanoplates/graphene composite with high gravimetric and volumetric performance for Na-ion storage. Sustain Energy Fuels 3:3163–3171. https://doi.org/10.1039/C9SE00544G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JKD acknowledges the partial financial support from UGC-DAE CSR through a Collaborative Research Scheme (CRS) (project number: CRS/2022-23/1092) and L.N. Patro acknowledges the support from university research grant (SRMAP/URG/E&PP/2022-23/001). The authors thank SRM-IST SCIF and NRC facilities for elemental and microscopy analysis.

Author information

Authors and Affiliations

Authors

Contributions

JKD, LNP, and RP conceived and designed the study. SMA synthesized the materials and YBR, SK, PM, and SMA performed the measurements. JKD, SMA, SLJ, and KK wrote the first draft of the manuscript, which was reviewed by LNP, RP, and JKD. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rajkumar Patel, Laxmi Narayana Patro or Jatis Kumar Dash.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this work. The following Supporting Information is available and includes the crystal growth process of Bi2Te3, the X-ray diffraction pattern of precursor materials, crystallite sizes, etc.

Additional information

Handling Editor: Jean-Francois Gohy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 439 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abzal, S.M., Janga, S.L., Bhaskara Rao, Y. et al. Solvothermally synthesized bismuth telluride hexagonal platelets as an efficient anode material for lithium- and sodium-ion batteries. J Mater Sci 59, 6879–6893 (2024). https://doi.org/10.1007/s10853-024-09571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09571-y

Navigation