Skip to main content
Log in

Correlation between microstructure, magnetic properties and mechanical behavior of the Permimphy alloy after high-pressure torsion

  • Processing Bulk Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study investigates the correlation between coercivity (Hc), grain size (d), and dislocation density in the Permimphy alloy (Fe–80%Ni–6%Mo). The samples used in this study were subjected to varying levels of applied strain through processing by high-pressure torsion. The microstructure and the magnetic coercivity were analyzed using a scanning electron microscope, electron backscatter diffraction and vibrating sample magnetometry. The grain size of the samples varied from 30 to 190 nm. This study demonstrated a strong correlation between Hc and microhardness when d > 3 µm. The results show that the coercivity of the Permimphy alloy follows an inverse V-shape with respect to grain size. The coercivity of the samples decreased despite increasing the dislocation density and the hardness when d < 3 µm. This phenomenon is attributed to the ferromagnetic exchange interaction across multiple grains and leads to the alignment of magnetic moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Some data included in this work are available upon request by contact with the corresponding author.

References

  1. Czichos H, Saito T, Smith LR (2006) Springer handbook of materials measurement methods. Springer, Berlin

    Book  Google Scholar 

  2. Ouyang G, Chen X, Liang Y et al (2019) Review of Fe-6.5 wt%Si high silicon steel—a promising soft magnetic material for sub-kHz application. J Magn Magn Mater 481:234–250. https://doi.org/10.1016/j.jmmm.2019.02.089

    Article  CAS  Google Scholar 

  3. Gutfleisch O, Willard MA, Brück E et al (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23:821–842. https://doi.org/10.1002/adma.201002180

    Article  CAS  PubMed  Google Scholar 

  4. Waeckerlé T, Demier A, Godard F, Fraisse H (2020) Evolution and recent developments of 80%Ni permalloys. J Magn Magn Mater 505:166635. https://doi.org/10.1016/j.jmmm.2020.166635

    Article  CAS  Google Scholar 

  5. PERMIMPHY is a 80% Nickel soft magnetic alloy. In: Aperam. https://www.aperam.com/product/permimphy-80-nickel/. Accessed 3 Apr 2023

  6. Han L, Maccari F, Souza Filho IR et al (2022) A mechanically strong and ductile soft magnet with extremely low coercivity. Nature 608:310–316. https://doi.org/10.1038/s41586-022-04935-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nabi B, Helbert A-L, Brisset F et al (2013) Effect of recrystallization and degree of order on the magnetic and mechanical properties of soft magnetic FeCo–2V alloy. Mater Sci Eng A 578:215–221. https://doi.org/10.1016/j.msea.2013.04.066

    Article  CAS  Google Scholar 

  8. Nabi B, Helbert A-L, Brisset F et al (2014) Effect of long range order on mechanical properties of partially recrystallized Fe49Co–2V alloy. Mater Sci Eng A 592:70–76. https://doi.org/10.1016/j.msea.2013.10.093

    Article  CAS  Google Scholar 

  9. Herzer G (1989) Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans Magn 25:3327–3329. https://doi.org/10.1109/20.42292

    Article  CAS  Google Scholar 

  10. Herzer G (1990) Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans Magn 26:1397–1402. https://doi.org/10.1109/20.104389

    Article  CAS  Google Scholar 

  11. Herzer G (1997) Chapter 3 Nanocrystalline soft magnetic alloys. In: Handbook of Magnetic Materials. Elsevier, pp 415–462

  12. Herzer G (2013) Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater 61:718–734. https://doi.org/10.1016/j.actamat.2012.10.040

    Article  CAS  Google Scholar 

  13. Suzuki K, Ito N, Garitaonandia JS et al (2008) Local random magnetocrystalline and macroscopic induced anisotropies in magnetic nanostructures. J Non-Cryst Solids 354:5089–5092. https://doi.org/10.1016/j.jnoncrysol.2008.06.118

    Article  CAS  Google Scholar 

  14. Pfeifer F, Radeloff C (1980) Soft magnetic Ni–Fe and Co–Fe alloys—some physical and metallurgical aspects. J Magn Magn Mater 19:190–207. https://doi.org/10.1016/0304-8853(80)90592-2

    Article  CAS  Google Scholar 

  15. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002

    Article  CAS  Google Scholar 

  16. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater 47:579–583. https://doi.org/10.1016/S1359-6454(98)00365-6

    Article  CAS  Google Scholar 

  17. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  18. Zhilyaev AP, Kim B-K, Nurislamova GV et al (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scr Mater 46:575–580. https://doi.org/10.1016/S1359-6462(02)00018-0

    Article  CAS  Google Scholar 

  19. Zhilyaev AP, Nurislamova GV, Kim B-K et al (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765. https://doi.org/10.1016/S1359-6454(02)00466-4

    Article  CAS  Google Scholar 

  20. Azzeddine H, Bradai D, Baudin T, Langdon TG (2022) Texture evolution in high-pressure torsion processing. Prog Mater Sci 125:100886. https://doi.org/10.1016/j.pmatsci.2021.100886

    Article  CAS  Google Scholar 

  21. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660. https://doi.org/10.1007/s10853-012-7072-0

    Article  CAS  Google Scholar 

  22. Figueiredo RB, Pereira PHR, Aguilar MTP et al (2012) Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 60:3190–3198. https://doi.org/10.1016/j.actamat.2012.02.027

    Article  CAS  Google Scholar 

  23. Ateba Betanda Y, Helbert A-L, Brisset F et al (2014) Measurement of stored energy in Fe–48%Ni alloys strongly cold-rolled using three approaches: neutron diffraction, Dillamore and KAM approaches. Mater Sci Eng A 614:193–198. https://doi.org/10.1016/j.msea.2014.07.037

    Article  CAS  Google Scholar 

  24. Azzeddine H, Tirsatine K, Baudin T et al (2017) On the stored energy evolution after accumulative roll-bonding of invar alloy. Mater Chem Phys 201:408–415. https://doi.org/10.1016/j.matchemphys.2017.08.063

    Article  CAS  Google Scholar 

  25. Bate PS, Knutsen RD, Brough I, Humphreys FJ (2005) The characterization of low-angle boundaries by EBSD. J Microsc 220:36–46. https://doi.org/10.1111/j.1365-2818.2005.01513.x

    Article  CAS  PubMed  Google Scholar 

  26. Pippan R, Scheriau S, Taylor A et al (2010) Saturation of fragmentation during severe plastic deformation. Annu Rev Mater Res 40:319–343. https://doi.org/10.1146/annurev-matsci-070909-104445

    Article  CAS  Google Scholar 

  27. Rathmayr GB, Pippan R (2011) Influence of impurities and deformation temperature on the saturation microstructure and ductility of HPT-deformed nickel. Acta Mater 59:7228–7240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Renk O, Pippan R (2019) Saturation of grain refinement during severe plastic deformation of single phase materials: reconsiderations, current status and open questions. Mater Trans 60:1270–1282

    Article  CAS  Google Scholar 

  29. Tsuji N, Kamikawa N, Li BL (2007) Grain size saturation during severe plastic deformation. In: Materials science forum. Trans Tech Publ, pp 2837–2842

  30. Yu T, Hansen N, Huang X (2011) Recovery by triple junction motion in aluminium deformed to ultrahigh strains. Proc R Soc Math Phys Eng Sci 467:3039–3065. https://doi.org/10.1098/rspa.2011.0097

    Article  CAS  Google Scholar 

  31. Yu T, Hansen N, Huang X, Godfrey A (2014) Observation of a new mechanism balancing hardening and softening in metals. Mater Res Lett 2:160–165

    Article  Google Scholar 

  32. Tsuji N (2008) Formation mechanisms of ultrafine grained structures in severe plastic deformation of metallic materials. J Iron Steel Inst Jpn 94:582–589

    Article  CAS  Google Scholar 

  33. Humphreys FJ, Hatherly M (2012) Recrystallization and related annealing phenomena. Elsevier

    Google Scholar 

  34. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. https://doi.org/10.1007/s10853-013-7687-9

    Article  CAS  Google Scholar 

  35. Lee SW, Horita Z (2010) Annealing behavior of FeNi alloy processed by high-pressure torsion. Mater Sci Forum 667–669:313–318. https://doi.org/10.4028/www.scientific.net/MSF.667-669.313

    Article  Google Scholar 

  36. Tirsatine K, Azzeddine H, Huang Y et al (2018) An EBSD analysis of Fe-36%Ni alloy processed by HPT at ambient and a warm temperature. J Alloys Compd 753:46–53. https://doi.org/10.1016/j.jallcom.2018.04.194

    Article  CAS  Google Scholar 

  37. Tirsatine K, Azzeddine H, Baudin T et al (2014) Texture and microstructure evolution of Fe–Ni alloy after accumulative roll bonding. J Alloys Compd 610:352–360. https://doi.org/10.1016/j.jallcom.2014.04.173

    Article  CAS  Google Scholar 

  38. Bonnot E, Helbert A-L, Brisset F, Baudin T (2013) Microstructure and texture evolution during the ultra grain refinement of the Armco iron deformed by accumulative roll bonding (ARB). Mater Sci Eng A 561:60–66. https://doi.org/10.1016/j.msea.2012.11.017

    Article  CAS  Google Scholar 

  39. Boudekhani S, Azzeddine H, Tirsatine K et al (2018) Microstructure, texture, and mechanical properties of Ni-W alloy after accumulative roll bonding. J Mater Eng Perform 27:5561–5570. https://doi.org/10.1007/s11665-018-3628-8

    Article  CAS  Google Scholar 

  40. Cullity BD, Graham CD (2011) Introduction to magnetic materials. Wiley

    Google Scholar 

  41. Hosokawa A, Ohtsuka H, Li T et al (2014) Micostructure and magnetic properties in nanostructured Fe and Fe-based intermetallics produced by high-pressure torsion. Mater Trans 55:1286–1291. https://doi.org/10.2320/matertrans.M2014119

    Article  CAS  Google Scholar 

  42. Xiang Z, Sun Q, Wang S (2022) Effect of dislocation pattern on the magnetic domain structure of pure polycrystalline Ni. J Mater Res Technol 17:1896–1900. https://doi.org/10.1016/j.jmrt.2022.01.107

    Article  CAS  Google Scholar 

  43. Lo CCH, Kinser E, Jiles DC (2003) Modeling the interrelating effects of plastic deformation and stress on magnetic properties of materials. J Appl Phys 93:6626–6628. https://doi.org/10.1063/1.1557356

    Article  CAS  Google Scholar 

  44. Dabou O, Bensouilah A, Baudin T et al (2023) Evolution of the texture, microstructure, and magnetic properties of a Permimphy alloy after accumulative roll bonding and aging. J Mater Sci. https://doi.org/10.1007/s10853-023-08994-3

    Article  Google Scholar 

  45. Gabold H, Luan Z, Paul N et al (2018) Structural and magnetic properties of cobalt iron disulfide (CoxFe1−xS2) nanocrystals. Sci Rep 8:4835. https://doi.org/10.1038/s41598-018-22996-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Two of the authors were supported by the European Research Council under Grant Agreement No. 267464-SPDMETALS (YH and TGL).

Author information

Authors and Affiliations

Authors

Contributions

Oussama Dabou (M.Sc.) contributed to investigation, validation, writing, and visualization. Thierry Baudin (Dr.) contributed to methodology, review and editing, visualization. François Brisset (Dr.) contributed to methodology and investigation. Thierry Waeckerlé (Dr.) and Yanick Ateba Betanda (Dr.) contributed to methodology and review. Yi Huang (Prof.) contributed to methodology, review and editing. Djamel Bradai (Prof.) and Anne-Laure Helbert (Prof.) contributed to conceptualization, writing, original draft, review and editing, visualization and supervision. Terence G. Langdon (Prof.) contributed to review and editing.

Corresponding author

Correspondence to Oussama Dabou.

Ethics declarations

Conflict of interest

The authors declare no competing financial or personal interests concerning the work reported in this manuscript to the best of their knowledge.

Ethical approval

Not applicable.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabou, O., Baudin, T., Brisset, F. et al. Correlation between microstructure, magnetic properties and mechanical behavior of the Permimphy alloy after high-pressure torsion. J Mater Sci 59, 5968–5980 (2024). https://doi.org/10.1007/s10853-024-09490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09490-y

Navigation