Skip to main content
Log in

Composite lubricating layer with enhanced wear-resistant properties between HXLPE and Cu/ZrO2 ceramic friction interface

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), as a highly hydrophilic as well as biocompatible material, has been widely used in biomedical applications. In this study, the friction reduction and wear resistance of HXLPE were improved by grafting PMPC on its surface. However, the PMPC will be sheared off during friction, which is difficult to meet the long-term service requirements of artificial joints. This can be achieved by improving the lubrication environment to minimize PMPC shedding. To simulate the human lubrication environment, free PMPC (lubrication factor) and Cu2+ (transition group metal ion catalyst) were added to neonatal bovine serum (NBCS). When the friction pair consisting of grafted PMPC-modified HXLPE and Cu/ZrO2 ceramics is rubbed therein, the grafted PMPC interacts with the free PMPC, while Cu2+ catalyzes the oxidative hydrolysis of serum proteins into carbon-containing small molecules and adsorbs on the surface of the Cu/ZrO2 ceramics to form a carbon-rich lubrication layer. The composite lubrication layer consisting of grafted-free PMPC and carbon-rich lubrication layer provides good load-bearing and lubrication properties at the friction interface. And the wear rate is reduced by 45% compared to rubbing in deionized water. This technique can reduce the shedding of grafted PMPC state and improve the load-bearing performance of the interfacial lubrication layer, thus reducing the wear of HXLPE and prolonging the service life of the artificial joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability

The data of this study are available from the corresponding author.

References

  1. Sawano H, Warisawa S, Ishihara S (2009) Study on long life of artificial joints by investigating optimal sliding surface geometry for improvement in wear resistance. Precis Eng 33:492–498. https://doi.org/10.1016/j.precisioneng.2009.01.005

    Article  Google Scholar 

  2. Charnley J (1972) The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. J Bone Joint Surg Br 54:61–76. https://doi.org/10.1007/978-1-4471-5451-8_17

    Article  CAS  PubMed  Google Scholar 

  3. Dorr LD, Glousman R, Hoy ALS et al (1986) Treatment of femoral neck fractures with total hip replacement versus cemented and non-cemented hemiarthroplasty. J Arthroplasty 1:21–28. https://doi.org/10.1016/S0883-5403(86)80006-7

    Article  CAS  PubMed  Google Scholar 

  4. Rorabeck CH, Bourne RB, Laupacis A et al (1994) A double-blind study of 250 cases comparing cemented with cementless total hip arthroplasty. Cost-effectiveness and its impact on health-related quality of life. Clin Orthop Relat Res 298:156–164. https://doi.org/10.1097/00003086-199401000-00021

    Article  Google Scholar 

  5. Tidermark J, Ponzer S, Svensson O et al (2003) Internal fixation compared with total hip replacement for displaced femoral neck fractures in the elderly. J Bone Joint Surg Br 86:380–388. https://doi.org/10.2106/JBJS.K.00244

    Article  Google Scholar 

  6. Atkins GJ, Haynes DR, Howie DW et al (2011) Role of polyethylene particles in periprosthetic osteolysis: a review. World J Orthop 10:93–101. https://doi.org/10.2106/JBJS.K.00244

    Article  Google Scholar 

  7. Gallo J, Goodman SB, Konttinen YT et al (2013) Particle disease: biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun 2:213–224. https://doi.org/10.1177/1753425912451779

    Article  CAS  Google Scholar 

  8. Zhang XG, Zhang YL, Jin ZM (2022) A review of the bio-tribology of medical devices. Friction 10:4–30. https://doi.org/10.1007/s40544-021-0512-6

    Article  CAS  Google Scholar 

  9. Fang ZH, Tu QZ, Shen XM et al (2022) Biomimetic surface modification of UHMWPE fibers to enhance interfacial adhesion with rubber matrix via constructing polydopamine functionalization platform and then depositing zinc oxide nanoparticles. Surf Interfaces 29:101728. https://doi.org/10.1016/j.surfin.2022.101728

    Article  CAS  Google Scholar 

  10. Xie D, Liu HJ, Deng XR, Leng YX et al (2009) Deposition of a-C: H films on UHMWPE substrate and its wear-resistance. Appl Surf Sci 256:284–288. https://doi.org/10.1016/j.apsusc.2009.08.017

    Article  CAS  ADS  Google Scholar 

  11. Fernandez-Pradas JM, Naranjo-Leon S, Morenza JL et al (2012) Surface modification of UHMWPE with infrared femtosecond laser. Appl Surf Sci 258:9256–9259. https://doi.org/10.1016/j.apsusc.2011.09.106

    Article  CAS  ADS  Google Scholar 

  12. Kang XQ, Zong XH, Zhang P et al (2021) Effects of epigallocatechin gallate incorporation in UHMWPE on biological behavior, oxidative degradation, mechanical and tribological performance for biomedical applications. Tribol Int 158:106887. https://doi.org/10.1016/j.triboint.2021.106887

    Article  CAS  Google Scholar 

  13. Hussain O, Ahmad B, Saleem S (2021) Tribological performance of biomedical grade UHMWPE/nanoAl2O3/vitamin-C hybrid composite for cartilage replacements. Mater Lett 291:129515. https://doi.org/10.1016/j.matlet.2021.129515

    Article  CAS  Google Scholar 

  14. Ren Y, Wang FY, Lan RT, Fu WQ et al (2021) Polyphenol-assisted chemical crosslinking: a new strategy to achieve highly crosslinked, antioxidative, and antibacterial ultrahigh-molecular-weight polyethylene for total joint replacement. ACS Biomater Sci Eng 7:373–381. https://doi.org/10.1021/acsbiomaterials.0c01437

    Article  CAS  PubMed  Google Scholar 

  15. Ma SH, Zhang XQ, Yu B et al (2019) Brushing up functional materials. NPG Asia Mater 11:24. https://doi.org/10.1038/s41427-019-0121-2

    Article  ADS  Google Scholar 

  16. Rong MM, Liu H, Scaraggi M et al (2020) High lubricity meets load capacity: cartilage mimicking bilayer structure by brushing up stiff hydrogels from subsurface. Adv Funct Mater 30:2004062. https://doi.org/10.1002/adfm.202004062

    Article  CAS  Google Scholar 

  17. Yamamoto K, Tateiwa T, Takahashi Y (2017) Vitamin E-stabilized highly crosslinked polyethylenes: the role and effectiveness in total hip arthroplasty. J Orthop Sci 22:384–390. https://doi.org/10.1016/j.jos.2017.01.012

    Article  PubMed  Google Scholar 

  18. Tairy O, Kampf N, Driver MJ et al (2015) Dense, highly hydrated polymer brushes via modified atom-transfer-radical-polymerization: structure, surface interactions, and frictional dissipation. Macromolecules 48:140–151. https://doi.org/10.1021/ma5019439

    Article  CAS  ADS  Google Scholar 

  19. Chen M, Briscoe WH, Armes SP et al (2009) Lubrication at physiological pressures by polyzwitterionic brushes. Science 323:1698–1701. https://doi.org/10.1126/science.1169399

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Zhang ZY, Morse AJ, Armes SP et al (2011) Effect of brush thickness and solvent composition on the friction force response of poly(2-(methacryloyloxy) ethylphosphorylcholine) brushes. Langmuir 27:2514–2521. https://doi.org/10.1021/la1043848

    Article  CAS  PubMed  Google Scholar 

  21. Zhang ZY, Moxey M, Alswieleh A et al (2016) Effect of salt on phosphorylcholine-based zwitterionic polymer brushes. Langmuir 32:5048–5057. https://doi.org/10.1021/acs.langmuir.6b00763

    Article  CAS  PubMed  Google Scholar 

  22. Ishihara K (2015) Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polym J 47:585–597. https://doi.org/10.1038/pj.2015.45

    Article  CAS  Google Scholar 

  23. Kyomoto M, Moro T, Miyaji F et al (2010) Effect of 2-methacryloyloxyethyl phosphorylcholine concentration on photo-induced graft polymerization of polyethylene in reducing the wear of orthopaedic bearing surface. J Biomed Mater Res A 86:439–447. https://doi.org/10.1002/jbm.a.31511

    Article  CAS  Google Scholar 

  24. Yamane S, Kyomoto M, Moro T et al (2016) Effects of extra irradiation on surface and bulk properties of PMPC-grafted crosslinked polyethylene. J Biomed Mater Res A 104:37–47. https://doi.org/10.1002/jbm.a.31511

    Article  CAS  PubMed  Google Scholar 

  25. Nakano H, Noguchi Y, Kakinoki S et al (2020) Highly durable lubricity of photo-cross-linked zwitterionic polymer brushes supported by poly(ether ether ketone) substrate. ACS Appl Bio Mater 3:1071–1078. https://doi.org/10.1021/acsabm.9b01040

    Article  CAS  PubMed  Google Scholar 

  26. Kyomoto M, Moro T, Takatori Y et al (2010) Self-initiated surface grafting with poly(2-methacryloyloxyethyl phosphorylcholine) on poly(ether-ether-ketone). Biomaterials 31:1017–1024. https://doi.org/10.1016/j.biomaterials.2009.10.055

    Article  CAS  PubMed  Google Scholar 

  27. Yang B, Duan XB, Huang JJ (2015) Ultrathin, biomimetic, super hydrophilic layers of cross-linked poly(phosphobetaine) on polyethylene by photografting. Langmuir 31:1120–1126. https://doi.org/10.1021/la5031137

    Article  CAS  PubMed  Google Scholar 

  28. Ghosha S, Abanteriba S, Wong S et al (2019) Performance analysis of grafted poly (2-methacryloyloxyethylphosphorylcholine) on additively manufactured titanium substrate for hip implant applications. J Mech Behav Biomed Mater 100:103412. https://doi.org/10.1016/j.jmbbm.2019.103412

    Article  CAS  Google Scholar 

  29. Feng SF, Liu YH, Li JJ et al (2021) Superlubricity achieved with zwitterionic brushes in diverse conditions induced by shear actions. Macromolecules 54:5719–5727. https://doi.org/10.1021/acs.macromol.1c00430

    Article  CAS  ADS  Google Scholar 

  30. Wang K, Xiong DS, Niu YX (2014) Novel lubricated surface of titanium alloy based on porous structure and hydrophilic polymer brushes. Appl Surf Sci 317:875–883. https://doi.org/10.1016/j.apsusc.2014.09.014

    Article  CAS  ADS  Google Scholar 

  31. Tone S, Hasegawa M, Puppulin L et al (2018) Surface modifications and oxidative degradation in MPC-grafted highly cross-linked polyethylene liners retrieved from short-term total hip arthroplasty. Acta Biomater 66:157–165. https://doi.org/10.1016/j.actbio.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  32. Yue QY, Lei LL, Gu Y et al (2022) Bioinspired polysaccharide-derived Zwitterionic brush-like copolymer as an injectable biolubricant for arthritis treatment. Adv Healthcare Mater 11:2200090. https://doi.org/10.1002/adhm.202200090

    Article  CAS  Google Scholar 

  33. Yang RH, Li G, Zhuang CY et al (2021) Gradient bimetallic ion–based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci Adv 7:eabg3816. https://doi.org/10.1126/sciadv.abg3816

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophy-siology. Physiol Rev 87:245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  35. Nyholm N, Espallargas N (2023) Functionalized carbon nanostructures as lubricant additives—a review. Carbon 201:1200–1228. https://doi.org/10.1016/j.carbon.2022.10.035

    Article  CAS  Google Scholar 

  36. Su YH, Jing PP, Li YX et al (2023) Influence of Cu doping on the biocompatibility of zirconia-toughened alumina ceramics for artificial joints. Ceram Int 49:4109–4118. https://doi.org/10.1016/j.ceramint.2022.09.291

    Article  CAS  Google Scholar 

  37. Li YX, Jing PP, Guo J et al (2023) Mechanical properties and wear behaviors of Cu-doped zirconia-toughened alumina ceramics. Ceram Int 49:14346–14354. https://doi.org/10.1016/j.ceramint.2023.01.023

    Article  CAS  Google Scholar 

  38. Xiong DS, Deng YL, Wang N et al (2014) Influence of surface PMPC brushes on tribological and biocompatibility properties of UHMWPE. Appl Surf Sci 298:56–61. https://doi.org/10.1016/j.apsusc.2014.01.088

    Article  CAS  ADS  Google Scholar 

  39. Liu SS, Deng YX, Sun H et al (2022) Composite lubricating films with silane coupling agent-modifed carbon nanotubes on a silicon substrate with enhanced wear-resistant properties. Tribol Lett 70:111. https://doi.org/10.1007/s11249-022-01650-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support provided by the National Natural Science Foundation of China (52175191), Joint Fund of the Ministry of Education for Equipment Pre-research (8091B030123), Natural Science Foundation of Hunan Province (2023JJ50238), Science and Technology Innovation Program of Hunan Province (2022RC1133).

Author information

Authors and Affiliations

Authors

Contributions

Sisi Liu and Yuxing Deng performed the measurements and analysis of the whole experimental data and contributed to the writing of the final version. Shengqiang Jiang and Jingang Liu performed the experimental results and the discussion of results.

Corresponding author

Correspondence to Liu Sisi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in the paper.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Deng, Y., Jiang, S. et al. Composite lubricating layer with enhanced wear-resistant properties between HXLPE and Cu/ZrO2 ceramic friction interface. J Mater Sci 59, 3970–3983 (2024). https://doi.org/10.1007/s10853-024-09426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09426-6

Navigation