Skip to main content
Log in

Sustainable strategies to synthesize small-pore NaP zeolites using natural minerals

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interesting chemical and physical properties of microporous zeolites have led to their use in numerous industrial applications, such as adsorbents, ion exchangers, and catalysts, increasing the worldwide consumption of these materials annually. However, the development of synthetic zeolites usually involves the use of expensive chemical reagents; therefore, the use of alternative sources of Si and/or Al, such as minerals and waste streams, has gained attention over the past few years owing to the benefits in production costs and decreasing environmental burden. In this study, we report the synthesis of single-phase small-pore NaP zeolites via alkaline hydrothermal treatment (HT) using natural clinoptilolite (CLIP) as the Si and Al source. The synthesized zeolites were analyzed using X-ray diffraction, electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. The results showed that the variations in molar concentration (1 and 2 M), crystallization time (24 and 39 h), and crystallization temperature (90, 105, and 110 °C) play a major role in obtaining two types of NaP isomorphs (NaP1 and NaP2), which feature a flexible framework, where the synthesis parameters of 1 M, 24 h, and 90 °C led to the formation of a single-phase NaP1 zeolite with high purity. These results demonstrate the feasibility of developing sustainable synthesis processes from low-cost and abundant raw materials to produce high-value-added synthetic zeolites as alternatives to traditional chemical reagent-based synthesis methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sánchez-Hernández R, López-Delgado A, Padilla I et al (2016) One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste. Microporous Mesoporous Mater 226:267–277. https://doi.org/10.1016/j.micromeso.2016.01.037

    Article  CAS  Google Scholar 

  2. Dusselier M, Davis ME (2018) Small-pore zeolites: synthesis and catalysis. Chem Rev 118:5265–5329. https://doi.org/10.1021/acs.chemrev.7b00738

    Article  CAS  Google Scholar 

  3. Sharma P, Song JS, Han MH, Cho CH (2016) GIS-NaP1 zeolite microspheres as potential water adsorption material: influence of initial silica concentration on adsorptive and physical/topological properties. Sci Rep 6:1–26. https://doi.org/10.1038/srep22734

    Article  CAS  Google Scholar 

  4. McCusker LB, Olson DH, Baerlocher C (2007) GIS—I41/amd. Atlas of zeolite framework types, 6th edn. Elsevier Science B.V., Amsterdam, pp 146–147

    Google Scholar 

  5. Albert BR, Cheetham AK, Stuart JA, Adams CJ (1998) Investigations on P zeolites: synthesis, characterisation, and structure of highly crystalline low-silica NaP. Microporous Mesoporous Mater 21:133–142. https://doi.org/10.1016/S1387-1811(97)00059-0

    Article  CAS  Google Scholar 

  6. Maldonado M, Oleksiak MD, Chinta S, Rimer JD (2013) Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. J Am Chem Soc 135:2641–2652. https://doi.org/10.1021/ja3105939

    Article  CAS  Google Scholar 

  7. Oleksiak MD, Ghorbanpour A, Conato MT et al (2016) Synthesis strategies for ultrastable zeolite GIS polymorphs as sorbents for selective separations. Chem - A Eur J 22:16078–16088. https://doi.org/10.1002/chem.201602653

    Article  CAS  Google Scholar 

  8. Baerlocher C, Meier WM (1972) The crystal structure of synthetic zeolite na-p 1, an isotype of gismondine. Zeitschrift fur Krist - New Cryst Struct 135:339–354. https://doi.org/10.1524/zkri.1972.135.5-6.339

    Article  CAS  Google Scholar 

  9. Deneyer A, Ke Q, Devos J, Dusselier M (2020) Zeolite synthesis under nonconventional conditions: reagents, reactors, and modi operandi. Chem Mater 32:4884–4919. https://doi.org/10.1021/acs.chemmater.9b04741

    Article  CAS  Google Scholar 

  10. Khaleque A, Alam MM, Hoque M et al (2020) Zeolite synthesis from low-cost materials and environmental applications: a review. Environ Adv 2:100019. https://doi.org/10.1016/j.envadv.2020.100019

    Article  Google Scholar 

  11. Azizi D, Ibsaine F, Dionne J et al (2021) Microporous and macroporous materials state-of-the-art of the technologies in zeolitization of aluminosilicate bearing residues from mining and metallurgical industries: A comprehensive review. Microporous Mesoporous Mater 318:111029. https://doi.org/10.1016/j.micromeso.2021.111029

    Article  CAS  Google Scholar 

  12. Pangan N, Gallardo S, Gaspillo PA et al (2021) Hydrothermal synthesis and characterization of zeolite a from corn (Zea mays) stover ash. Materials (Basel) 14:4915. https://doi.org/10.3390/ma14174915

    Article  CAS  Google Scholar 

  13. Wang Y, Lin F (2009) Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite. J Hazard Mater 166:1014–1019. https://doi.org/10.1016/j.jhazmat.2008.12.001

    Article  CAS  Google Scholar 

  14. Behin J, Kazemian H, Rohani S (2016) Sonochemical synthesis of zeolite NaP from clinoptilolite. Ultrason Sonochem 28:400–408. https://doi.org/10.1016/j.ultsonch.2015.08.021

    Article  CAS  Google Scholar 

  15. Sánchez-Ruíz A, Robles-Gutiérrez I, Espejel-Ayala F (2018) Preparation of zeolitic material using natural clinoptilolite for CO2 capture. Rev Mex Ing Quim 17:573–585

    Article  Google Scholar 

  16. de las Pozas C, Díaz Quintanilla D, Pérez-Pariente J et al (1989) Hydrothermal transformation of natural clinoptilolite to zeolites Y and P1: influence of the Na, K content. Zeolites 9:33–39. https://doi.org/10.1016/0144-2449(89)90006-7

    Article  Google Scholar 

  17. Kang SJ, Egashira K (1997) Modification of different grades of Korean natural zeolites for increasing cation exchange capacity. Appl Clay Sci 12:131–144. https://doi.org/10.1016/S0169-1317(97)00002-1

    Article  CAS  Google Scholar 

  18. Kang SJ, Egashira K, Yoshida A (1998) Transformation of a low-grade Korean natural zeolite to high cation exchanger by hydrothermal reaction with or without fusion with sodium hydroxide. Appl Clay Sci 13:117–135. https://doi.org/10.1016/S0169-1317(98)00019-2

    Article  CAS  Google Scholar 

  19. De Fazio A, Brotzu P, Ghiara MR et al (2008) Hydrothermal treatment at low temperature of Sardinian clinoptilolite-bearing ignimbrites for increasing cation exchange capacity. Period Mineral 77:79–91. https://doi.org/10.2451/2008PM0006

    Article  Google Scholar 

  20. de Lima RCF, da Silva Oliveira D, Pergher SBC (2021) Interzeolitic transformation of clinoptilolite into GIS and LTA zeolite. Minerals 11:1313. https://doi.org/10.3390/min11121313

    Article  CAS  Google Scholar 

  21. Hong S, Um W (2021) Top-down synthesis of NaP zeolite from natural zeolite for the higher removal efficiency of Cs, Sr, and Ni. Minerals 11:1–15. https://doi.org/10.3390/min11030252

    Article  CAS  Google Scholar 

  22. IZA Copyright © 2017 Structure Commission of the International Zeolite Association database of zeolite structures. http://www.iza-structure.org/databases/. Accessed 20 Dec 2022

  23. Dimowa L, Tzvetanova Y (2021) Powder xrd study of changes of cd2+ modified clinoptilolite at different stages of the ion exchange process. Minerals 11:1130. https://doi.org/10.3390/min11101130

    Article  CAS  Google Scholar 

  24. Abdullahi T, Harun Z, Othman MHD (2017) A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Adv Powder Technol 28:1827–1840. https://doi.org/10.1016/j.apt.2017.04.028

    Article  CAS  Google Scholar 

  25. Huo Z, Xu X, Lü Z et al (2012) Synthesis of zeolite NaP with controllable morphologies. Microporous Mesoporous Mater 158:137–140. https://doi.org/10.1016/j.micromeso.2012.03.026

    Article  CAS  Google Scholar 

  26. Zubowa HL, Kosslick H, Müller D et al (2008) Crystallization of phase-pure zeolite NaP from MCM-22-type gel compositions under microwave radiation. Microporous Mesoporous Mater 109:542–548. https://doi.org/10.1016/j.micromeso.2007.06.002

    Article  CAS  Google Scholar 

  27. Hildebrando EA, Andrade CGB, Da Rocha Junior CAF et al (2014) Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum. Mater Res 17:174–179. https://doi.org/10.1590/S1516-14392014005000035

    Article  Google Scholar 

  28. Ali IO, El-Sheikh SM, Salama TM et al (2015) Controllable synthesis of NaP zeolite and its application in calcium adsorption. Sci China Mater 58:621–633. https://doi.org/10.1007/s40843-015-0075-9

    Article  CAS  Google Scholar 

  29. Shameli K, Bin AM, Zargar M et al (2011) Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int J Nanomed 6:331–341. https://doi.org/10.2147/ijn.s16964

    Article  CAS  Google Scholar 

  30. Youssef HF, Hegazy WH, Abo-Almaged HH, El-Bassyouni GT (2015) Novel synthesis method of micronized Ti-Zeolite Na-A and cytotoxic activity of its silver exchanged form. Bioinorg Chem Appl. 428121:1–12 https://doi.org/10.1155/2015/428121

    Article  CAS  Google Scholar 

  31. Sánchez-Hernández R, Padilla I, López-Andrés S, López-Delgado A (2017) Eco-friendly bench-scale zeolitization of an Al-containing waste into gismondine-type zeolite under effluent recycling. J Clean Prod 161:792–802. https://doi.org/10.1016/j.jclepro.2017.05.201

    Article  CAS  Google Scholar 

  32. Franus W, Wdowin M, Franus M (2014) Synthesis and characterization of zeolites prepared from industrial fly ash. Environ Monit Assess 186:5721–5729. https://doi.org/10.1007/s10661-014-3815-5

    Article  CAS  Google Scholar 

  33. Cardoso AM, Paprocki A, Ferret LS et al (2015) Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel 139:59–67. https://doi.org/10.1016/j.fuel.2014.08.016

    Article  CAS  Google Scholar 

  34. Bohra S, Kundu D, Naskar MK (2013) Synthesis of cashew nut-like zeolite NaP powders using agro-waste material as silica source. Mater Lett 106:182–185. https://doi.org/10.1016/j.matlet.2013.04.080

    Article  CAS  Google Scholar 

  35. Barr TL (1990) The nature of the relative bonding chemistry in zeolites: an XPS study. Zeolites 10:760–765. https://doi.org/10.1016/0144-2449(90)90058-Y

    Article  CAS  Google Scholar 

  36. Zhan X, Shirpour M (2017) Evolution of solid/aqueous interface in aqueous sodium-ion batteries. Chem Commun 53:204–207. https://doi.org/10.1039/C6CC08901A

    Article  CAS  Google Scholar 

  37. Huo Z, Xu X, Lv Z et al (2013) Thermal study of NaP zeolite with different morphologies. J Therm Anal Calorim 111:365–369. https://doi.org/10.1007/s10973-012-2301-y

    Article  CAS  Google Scholar 

  38. Meng X, Guo X, Zhong Y et al (2019) Synthesis of a high-quality NaP zeolite from epidesmine by a hydrothermal method. Bull Mater Sci 42:1–8. https://doi.org/10.1007/s12034-019-1918-x

    Article  CAS  Google Scholar 

  39. Tayraukham P, Jantarit N, Osakoo N, Wittayakun J (2020) Synthesis of pure phase NaP2 zeolite from the gel of NaY by conventional and microwave-assisted hydrothermal methods. Crystals 10:1–11. https://doi.org/10.3390/cryst10100951

    Article  CAS  Google Scholar 

  40. Dong J, Lin YS (1998) In situ synthesis of P-type zeolite membranes on porous α-alumina supports. Ind Eng Chem Res 37:2404–2409. https://doi.org/10.1021/ie970851o

    Article  CAS  Google Scholar 

  41. Katović A, Subotić B, Šmit I, Despotović LA (1989) Crystallization of tetragonal (B8) and cubic (B1) modifications of zeolite NaP from freshly prepared gel. Part 1 Mechanism of the crystallization. Zeolites 9:45–53. https://doi.org/10.1016/0144-2449(89)90008-0

    Article  Google Scholar 

  42. Choi HJ, Min JG, Ahn SH et al (2020) Framework flexibility-driven CO2 adsorption on a zeolite. Mater Horizons 7:1528–1532. https://doi.org/10.1039/d0mh00307g

    Article  CAS  Google Scholar 

  43. Hansen S, Håkansson U, Fälth L (1990) Structure of synthetic zeolite Na-P2. Acta Crystallogr Sect C Cryst Struct Commun 46:1361–1362. https://doi.org/10.1107/s010827018901262x

    Article  Google Scholar 

  44. Le T, Wang Q, Pan B et al (2019) Process regulation of microwave intensified synthesis of Y-type zeolite. Microporous Mesoporous Mater 284:476–485. https://doi.org/10.1016/j.micromeso.2019.04.029

    Article  CAS  Google Scholar 

  45. Boudia RA, Bendeddouche CK, Mazari MM et al (2023) Zeolite GIS polymorphs derived from clay fraction > 2 µm: the ability of clay fraction > 2 µm for crystallization of high-purity Na-P1 zeolite. Silicon. 15:5263–5270 https://doi.org/10.1007/s12633-023-02335-4

    Article  CAS  Google Scholar 

Download references

Acknowledgment

E.C.-G gratefully acknowledges the financial support from CONACYT through the CB-A1-S-44458 and 2096029-FORDECYT-PRONACES grants. J.A.M.-T acknowledges the support from a CONACYT PhD scholarship (743221). We also acknowledge the technical support provided by the M.C. Christian Albor Cortes from Centro de Investigaciones en Óptica, A.C. for providing SEM-EDS analyses of the samples.

Author information

Authors and Affiliations

Authors

Contributions

JAM-T contributed to methodology, formal analysis, validation, writing—original draft, writing—review & editing. FE-A contributed to methodology, validation, investigation, writing—original draft, writing—review & editing. RR-B contributed to conceptualization, methodology, investigation, writing—original draft, validation, writing—review & editing. EC-G contributed to conceptualization, methodology, investigation, writing—original draft, validation, writing—review & editing, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Rafael Ramírez-Bon or Eduardo Coutino-Gonzalez.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2415 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Torres, J.A., Espejel-Ayala, F., Ramírez-Bon, R. et al. Sustainable strategies to synthesize small-pore NaP zeolites using natural minerals. J Mater Sci 59, 423–434 (2024). https://doi.org/10.1007/s10853-023-09218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09218-4

Navigation