Skip to main content
Log in

MXenes-based photothermal hydrogels for macrophage polarization regulation via heat-shock protein

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The polarization of macrophages plays an important clinical role in the occurrence and development of many diseases. Photothermal therapy is a non-invasive treatment mode based on near-infrared light stimulation. The large surface of MXenes makes it have a high spectral band from UV to NIR region and high photothermal conversion efficiency, which has a very broad prospect in photothermal therapy. In this study, we report, for the first time, the integration of photothermal MXenes into gelatin methacryloyl (GelMA) hydrogels for macrophage polarization regulation. Macrophage M1 polarization was induced by photothermal effect to achieve immune reaction via heat-shock protein (HSP) 60, 70, and 90. This study indicated that we could propose immunomodulatory strategies based on the immunological characteristics of target diseases and provide ideas for the design and synthesis of new immunoregulatory biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gao Y, Xu X, Zhang X (2023) Targeting different phenotypes of macrophages: a potential strategy for natural products to treat inflammatory bone and joint diseases. Phytomedicine 118:154952

    CAS  Google Scholar 

  2. Song C, Xu J, Gao C et al (2022) Nanomaterials targeting macrophages in sepsis: a promising approach for sepsis management. Front Immunol 13:1026173

    Google Scholar 

  3. Locati M, Curtale G, Mantovani A (2020) Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 15:123–147

    CAS  Google Scholar 

  4. Li M, Yang Y, Xiong L et al (2023) Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol 16:80

    Google Scholar 

  5. Guerriero JL (2019) Macrophages: their untold story in T cell activation and function. Int Rev Cell Mol Biol 342:73–93

    CAS  Google Scholar 

  6. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    CAS  Google Scholar 

  7. Yunna C, Mengru H, Lei W et al (2020) Macrophage M1/M2 polarization. Eur J Pharmacol 877:173090

    Google Scholar 

  8. Wang L, Lu Q, Gao W et al (2021) Recent advancement on development of drug-induced macrophage polarization in control of human diseases. Life Sci 284:119914

    CAS  Google Scholar 

  9. Jazwinska DE, Kulawiec DG, Zervantonakis IK (2023) Cancer-mesothelial and cancer-macrophage crosstalk in the ovarian cancer microenvironment. Am J Physiol Cell Physiol.

  10. Liu R, Zhou Y, Chen H et al (2023) Membrane vesicles from Lactobacillus johnsonii delay osteoarthritis progression via modulating macrophage glutamine synthetase/mTORC1 axis. Biomed Pharmacother 165:115204

    CAS  Google Scholar 

  11. Chu D, Chen J, Liu X et al (2023) A tetramethylpyrazine-loaded hyaluronic acid-based hydrogel modulates macrophage polarization for promoting wound recovery in diabetic mice. Int J Biol Macromol 245:125495

    CAS  Google Scholar 

  12. Yang K, Hu L, Ma X et al (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24:1868–1872

    CAS  Google Scholar 

  13. Ke K, Yang W, Xie X et al (2017) Copper manganese sulfide nanoplates: a new two-dimensional theranostic nanoplatform for MRI/MSOT dual-modal imaging-guided photothermal therapy in the second near-infrared window. Theranostics 7:4763–4776

    CAS  Google Scholar 

  14. Choi Y, Min K, Han N, et al. (2023) Novel Application of NIR-I-Absorbing Quinoidal Conjugated Polymer as a Photothermal Therapeutic Agent. ACS Appl Mater Interfaces.

  15. Zhang X, Li Q, Li L et al (2023) Bioinspired mild photothermal effect-reinforced multifunctional fiber scaffolds promote bone regeneration. ACS Nano 17:6466–6479

    CAS  Google Scholar 

  16. Xu Y, Zhang Q, Chen R et al (2022) NIR-II photoacoustic-active DNA origami nanoantenna for early diagnosis and smart therapy of acute kidney injury. J Am Chem Soc 144:23522–23533

    CAS  Google Scholar 

  17. Li C, Ye J, Yang X et al (2022) Fe/Mn bimetal-doped ZIF-8-coated luminescent nanoparticles with up/downconversion dual-mode emission for tumor self-enhanced NIR-II imaging and catalytic therapy. ACS Nano 16:18143–18156

    CAS  Google Scholar 

  18. Zhang J, Zhang J, Li W et al (2017) Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imaging-guided highly effective chemo-thermal tumor therapy in vitro and in vivo. Theranostics 7:3007–3020

    CAS  Google Scholar 

  19. Zheng M, Yue C, Ma Y et al (2013) Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7:2056–2067

    CAS  Google Scholar 

  20. Zeng J, Goldfeld D, Xia Y (2013) A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew Chem Int Ed Engl 52:4169–4173

    CAS  Google Scholar 

  21. Robinson JT, Tabakman SM, Liang Y et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133:6825–6831

    CAS  Google Scholar 

  22. Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9:3593–3601

    CAS  Google Scholar 

  23. Mou J, Li P, Liu C et al (2015) Ultrasmall Cu2-x S nanodots for highly efficient photoacoustic imaging-guided photothermal therapy. Small 11:2275–2283

    CAS  Google Scholar 

  24. Kim J, Kim H, Kim WJ (2016) Single-layered MoS2-PEI-PEG nanocomposite-mediated gene delivery controlled by photo and redox stimuli. Small 12:1184–1192

    CAS  Google Scholar 

  25. Chen W, Ouyang J, Liu H, et al. (2017) Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv Mater 29.

  26. Tao W, Zhu X, Yu X, et al. (2017) Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv Mater 29.

  27. Shao J, Xie H, Huang H et al (2016) Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun 7:12967

    CAS  Google Scholar 

  28. Yu X, Cai X, Cui H et al (2017) Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9:17859–17864

    CAS  Google Scholar 

  29. Fu Y, Zhang J, Lin H et al (2021) 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration. Mater Sci Eng C Mater Biol Appl 118:111367

    CAS  Google Scholar 

  30. Lin H, Gao S, Dai C et al (2017) A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc 139:16235–16247

    CAS  Google Scholar 

  31. Lin H, Wang X, Yu L et al (2017) Two-dimensional ultrathin mxene ceramic nanosheets for photothermal conversion. Nano Lett 17:384–391

    CAS  Google Scholar 

  32. Riaz Z, Baddi S, Gao F, et al. (2023) Mxene-Based Supramolecular Composite Hydrogels for Antioxidant and Photothermal Antibacterial Activities. Macromol Biosci: e2300082.

  33. Hu ZC, Lu JQ, Zhang TW et al (2023) Piezoresistive MXene/Silk fibroin nanocomposite hydrogel for accelerating bone regeneration by Re-establishing electrical microenvironment. Bioact Mater 22:1–17

    CAS  Google Scholar 

  34. Naguib M, Kurtoglu M, Presser V et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 23:4248–4253

    CAS  Google Scholar 

  35. Choi J, Oh MS, Cho A et al (2023) Simple approach to enhance long-term environmental stability of MXene using initiated chemical vapor deposition surface coating. ACS Nano 17:10898–10905

    CAS  Google Scholar 

  36. Xia Z, Dai H, Chang J, et al. (2023) Rheology engineering for dry-spinning robust N-doped MXene sediment fibers toward efficient charge storage. Small: e2304687.

  37. Zhang Y, Yuan Z, Zhao L, et al. (2023) Review of Design Routines of MXene Materials for Magnesium-Ion Energy Storage Device. Small: e2301815.

  38. Palei S, Murali G, Kim CH et al (2023) A review on interface engineering of MXenes for perovskite solar cells. Nanomicro Lett 15:123

    CAS  Google Scholar 

  39. Nirmal KA, Ren W, Khot AC et al (2023) Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes. Adv Sci (Weinh) 10:e2300433

    Google Scholar 

  40. Yuan Z, Zhang M, Yen Z et al (2023) High-performance semi-transparent perovskite solar cells with over 22% visible transparency: pushing the limit through MXene interface engineering. ACS Appl Mater Interfaces 15:37629–37639

    CAS  Google Scholar 

  41. Li Z, Wei W, Zhang M, et al. (2023) Cryptotanshinone-doped photothermal synergistic MXene@PDA nanosheets with antibacterial and anti-inflammatory properties for wound healing. Adv Healthc Mater: e2301060.

  42. Wu M, Liu H, Zhu Y et al (2023) Mild photothermal-stimulation based on injectable and photocurable hydrogels orchestrates immunomodulation and osteogenesis for high-performance bone regeneration. Small 19:e2300111

    Google Scholar 

  43. He X, Qian Y, Wu C et al (2023) Entropy-mediated high-entropy MXenes nanotherapeutics: NIR-II-enhanced intrinsic oxidase mimic activity to combat methicillin-resistant staphylococcus aureus infection. Adv Mater 35:e2211432

    Google Scholar 

  44. Yang Q, Yin H, Xu T et al (2020) Engineering 2D mesoporous Silica@MXene-Integrated 3D-printing scaffolds for combinatory osteosarcoma therapy and NO-augmented bone regeneration. Small 16:e1906814

    Google Scholar 

  45. Fagone P, Di Rosa M, Palumbo M et al (2012) Modulation of heat shock proteins during macrophage differentiation. Inflamm Res 61:1131–1139

    CAS  Google Scholar 

  46. Son H, Choi HS, Baek SE et al (2023) Shear stress induces monocyte/macrophage-mediated inflammation by upregulating cell-surface expression of heat shock proteins. Biomed Pharmacother 161:114566

    CAS  Google Scholar 

  47. Chen W, Syldath U, Bellmann K et al (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219

    CAS  Google Scholar 

  48. Kol A, Bourcier T, Lichtman AH et al (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103:571–577

    CAS  Google Scholar 

  49. Wang R, Town T, Gokarn V et al (2006) HSP70 enhances macrophage phagocytosis by interaction with lipid raft-associated TLR-7 and upregulating p38 MAPK and PI3K pathways. J Surg Res 136:58–69

    CAS  Google Scholar 

  50. Ambade A, Catalano D, Lim A et al (2014) Inhibition of heat shock protein 90 alleviates steatosis and macrophage activation in murine alcoholic liver injury. J Hepatol 61:903–911

    CAS  Google Scholar 

  51. Saraswati SSK, Rana AK, Singh A et al (2023) HSP-27 and HSP-70 negatively regulate protective defence responses from macrophages during mycobacterial infection. Microbes Infect 25:105126

    CAS  Google Scholar 

  52. Hoang TX, Kim JY (2022) Cell surface Hsp90- and αMβ2 integrin-mediated uptake of bacterial flagellins to activate inflammasomes by human macrophages. Cells 11.

  53. Tulapurkar ME, Ramarathnam A, Hasday JD et al (2015) Bacterial lipopolysaccharide augments febrile-range hyperthermia-induced heat shock protein 70 expression and extracellular release in human THP1 cells. PLoS ONE 10:e0118010

    Google Scholar 

  54. Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85:905–910

    CAS  Google Scholar 

  55. Marcatili A, de I’Ero GC, Galdiero M et al (1997) TNF-alpha, IL-1 alpha, IL-6 and ICAM-1 expression in human keratinocytes stimulated in vitro with Escherichia coli heat-shock proteins. Microbiology (Reading) 143(Pt 1):45–53

    CAS  Google Scholar 

  56. Dong S, Guo X, Han F et al (2022) Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B 12:1163–1185

    CAS  Google Scholar 

  57. Tsan MF, Gao B (2004) Heat shock protein and innate immunity. Cell Mol Immunol 1:274–279

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Nos. 81772367 and 82072392); the Yunnan Traumatology and Orthopedics Clinical Medical Center (Grant No. ZX20191001); and the Grants from Yunnan Orthopedics and Sports Rehabilitation Clinical Medicine Research Center (Grant No. 202102AA310068).

Author information

Authors and Affiliations

Authors

Contributions

QW, JW, and YX conceived the study and wrote the manuscript. QW and YW carried out the data collection and data analysis. QW and XS contributed to the data curation, methodology, and validation. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Junlai Wan or Yongqing Xu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

Not applicable.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Q., Wu, Y., Shi, X. et al. MXenes-based photothermal hydrogels for macrophage polarization regulation via heat-shock protein. J Mater Sci 58, 18133–18146 (2023). https://doi.org/10.1007/s10853-023-09191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09191-y

Navigation