Skip to main content
Log in

Er-containing microalloyed aluminum alloys: a review

  • Lightweight Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microalloying has been an important method in aluminum alloy development for decades. Large number of papers have shown that the addition of trace element Erbium (Er) can effectively improve the comprehensive properties of aluminum alloys. Similar with the trace element Scandium (Sc), addition of trace element Er in aluminum alloys could form nano-sized L12-ordered Al3Er precipitates, which was coherent with the Al matrix. However, the dispersion precipitation strengthening effect of Al3Er was more significant than that of Al3Sc, at the same atomic content. In the case of the addition of both Er and Zr, core–shell-structured Al3(Er, Zr) precipitates formed instead of Al3Er precipitates. Those thermally-stable nanosized precipitates could significantly refine the grain size, retard the recrystallization, improve the mechanical properties and corrosion resistance. This paper reviewed several typical Er-containing microalloyed commercial aluminum alloys, like 2xxx (Al–Cu) alloys, 4xxx (Al–Si) alloys, 5xxx (Al–Mg) alloys, 7xxx (Al–Zn–Mg–Cu) alloys, as well as selective laser melting aluminum alloys.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data and code availability

Not applicable.

References

  1. Knipling KE, Dunand DC, Seidman DN (2022) Criteria for developing castable, creep-resistant aluminum-based alloys—a review. J Mater Res 97:246–265. https://doi.org/10.3139/146.101249

    Article  Google Scholar 

  2. Wu XL, Nie ZR, Wen SP, Gao KY, Huang H (2016) Progress on Er-containing micro-alloying aluminum alloys. Mater Sci Forum 877:211–217

    Article  Google Scholar 

  3. Paul LR (1991) The electrical resistivity of metals and alloys. Cambridge University Press, London

    Google Scholar 

  4. Fink WL, Willey LA (1939) Equilibrium relations in aluminum–zirconium alloys of high purity. Trans AIME 133:69–80

    Google Scholar 

  5. Fujikawa SI, Sugaya M, Takei H, Hirano KI (1979) Solid solubility and residual resistivity of scandium in aluminum. J Less Common Met 63:87–97. https://doi.org/10.1016/0022-5088(79)90211-X

    Article  CAS  Google Scholar 

  6. Zhang Y, Gao KY, Wen SP, Huang H, Wang W, Zhu Z, Nie ZR, Zhou D et al (2014) Determination of Er and Yb solvuses and trialuminide nucleation in Al–Er and Al–Yb alloys. J Alloys Compd 590:526–534. https://doi.org/10.1016/j.jallcom.2013.11.211

    Article  CAS  Google Scholar 

  7. Huang H, Wen SP, Wei W et al (2022) Research progress of erbium containing aluminum alloys. Mater China 41:778–785. https://doi.org/10.7502/j.issn.1674-3962.202206005

    Article  CAS  Google Scholar 

  8. Emmanuel C, Ludovic L, Thierry É, Williams L, Maylise N, Alexis D (2006) Complex precipitation pathways in multicomponent alloys. Nat Mater 5:482–488. https://doi.org/10.1038/Nmat1652

    Article  Google Scholar 

  9. Keith EK, Richard AK, Constance PL, David CD, David NS (2010) Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater 58:5184–5195. https://doi.org/10.1016/j.actamat.2010.05.054

    Article  CAS  Google Scholar 

  10. Fuller CB, Murray JL, Seidman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part I-Chemical compositions of Al3(Sc1xZrx) precipitates. Acta Mater 53:5401–5413. https://doi.org/10.1016/j.actamat.2005.08.016

    Article  CAS  Google Scholar 

  11. Wen SP, Gao KY, Li Y, Huang H, Nie ZR (2011) Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scr Mater 65:592–595. https://doi.org/10.1016/j.scriptamat.2011.06.033

    Article  CAS  Google Scholar 

  12. Wu H, Wen SP, Wu XL, Gao KY, Huang H, Wang W, Nie ZR (2015) A study of precipitation strengthening and recrystallization behavior in dilute Al–Er–Hf–Zr alloys. Mater Sci Eng A 639:307–313. https://doi.org/10.1016/j.msea.2015.05.027

    Article  CAS  Google Scholar 

  13. Wu H, Wen SP, Gao KY, Huang H, Wang W, Nie ZR (2014) Effect of Er additions on the precipitation strengthening of Al–Hf alloys. Scr Mater 87:5–8. https://doi.org/10.1016/j.scriptamat.2014.06.005

    Article  CAS  Google Scholar 

  14. Xu GF, Nie ZR, Jin TN, Yang JJ, Fu JB, Yin ZM (2002) Effects of trace erbium on casting microstructure of LF~3 Al-alloy. J Rare Earth 20:143–145. https://doi.org/10.3321/j.issn:1000-4343.2002.02.009

    Article  CAS  Google Scholar 

  15. Shi WN, Zhou HF, Zhang XF (2020) Effects of Al8Cu4Er phase on corrosion behavior of Al–Cu–Mg alloy with Er addition. Acta Metall Sin Engl 33:1379–1387. https://doi.org/10.1007/s40195-020-01060-w

    Article  CAS  Google Scholar 

  16. Pan S, Chen X, Zhou X, Wang Z, Chen K, Cao YD, Lu F, Li SF (2020) Micro-alloying effect of Er and Zr on microstructural evolution and yield strength of Al–3Cu (wt.%) binary alloys. Mater Sci Eng A 790:139391. https://doi.org/10.1016/j.msea.2020.139391

    Article  CAS  Google Scholar 

  17. Zhang LG, Masset PJ, Cao FY, Meng FG, Liu LB, Jin ZP (2011) Phase relationships in the Al-rich region of the Al–Cu–Er system. J Alloys Compd 509:3822–3831. https://doi.org/10.1016/j.jallcom.2010.12.029

    Article  CAS  Google Scholar 

  18. Li YT, Liu ZY, Xia QK, Yu RC (2006) Homogenizing process and form of Er in Al–Cu–Mg–Zr–Ag alloy. J Cent South Univ 37:1043–1047

    CAS  Google Scholar 

  19. Li YT, Liu ZY, Xia QK, Liu YB (2007) Grain refinement of the Al–Cu–Mg–Ag alloy with Er and Sc additions. Metall Trans A 38:2853–2858. https://doi.org/10.1007/s11661-007-9269-4

    Article  CAS  Google Scholar 

  20. Bai S, Liu ZY, Li YT, Hou YH, Chen Xu (2011) Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with addition of rare earth Er. Mater Sci Eng A 527:1806–1814. https://doi.org/10.1016/j.msea.2009.11.011

    Article  CAS  Google Scholar 

  21. Liang SS (2022) Study on phase evolution in AlCuMg and AlZnMgCu alloys microalloyed with Er, Si/Zr. PhD dissertation, Beijing University of Technology

  22. Shi ZM, Wang Q, Zhao G, Zhang RY (2015) Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys. Mater Sci Eng A 626:102–107. https://doi.org/10.1016/j.msea.2014.12.062

    Article  CAS  Google Scholar 

  23. Hu XW, Jiang FG, Ai FR, Hong Y (2012) Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy. J Alloys Compd 538:21–27. https://doi.org/10.1016/j.jallcom.2012.05.089

    Article  CAS  Google Scholar 

  24. Liu T, Pei Z, Barton D, Thompson GB, Brewer LN (2022) Characterization of nanostructures in a high pressure die cast Al–Si–Cu alloy. Acta Mater 224:117500. https://doi.org/10.1016/j.actamat.2021.117500

    Article  CAS  Google Scholar 

  25. Qi P, Li BL, Wang TB, Zhou L, Nie ZR (2019) Effect of erbium on the microstructure and mechanical properties of semi-solid Al–7Si–0.4Mg alloy. Adv Eng Mater 21:1801037. https://doi.org/10.1002/adem.201801037

    Article  CAS  Google Scholar 

  26. He Y, Xi HH, Ming WQ, Shao QQ, Shen RH, Lai YX, Wu CL, Chen JH (2021) Thermal stability and precipitate microstructures of Al–Si–Mg–Er alloy. Trans Nonferr Metal Soc 31:1–10. https://doi.org/10.1016/S1003-6326(20)65474-7

    Article  CAS  Google Scholar 

  27. Suwaree C, Dmitry GE, Ussadawut P, Chaowalit L (2019) Microstructure and elevated temperature mechanical properties of a direct-chill cast AA4032 alloy with copper and erbium additions. J Alloys Compd 782:865–874. https://doi.org/10.1016/j.jallcom.2018.12.195

    Article  CAS  Google Scholar 

  28. Okamoto H (2011) Al–Er (aluminum–erbium). Phase Equilib Diffus 32:261–262. https://doi.org/10.1007/s11669-011-9877-y

    Article  CAS  Google Scholar 

  29. Andrey GM, Anastania VM, Natalya YT, Vladimir KP (2019) The mechanism of L12 phase precipitation, microstructure and tensile properties of Al–Mg–Er–Zr alloy. Mater Sci Eng A 744:195–205. https://doi.org/10.1016/j.msea.2018.11.135

    Article  CAS  Google Scholar 

  30. Xue D, Wei W, Wu XL et al (2023) Effects of homogenization on the microstructural evolution of a novel Zr and Er containing Al–Mg–Zn alloy. Intermetallics 158:107907. https://doi.org/10.1016/j.intermet.2023.107907

    Article  CAS  Google Scholar 

  31. Wen SP, Wang W, Zhao WH, Wu XL, Gao KY, Huang H, Nie ZR (2016) Precipitation hardening and recrystallization behavior of AlMgErZr alloys. J Alloys Compd 687:143–151. https://doi.org/10.1016/j.jallcom.2016.06.045

    Article  CAS  Google Scholar 

  32. Fu L, Li Y, Jiang F, Huang J, Yin Z (2019) On the role of Sc or Er microalloying in the microstructure evolution of Al–Mg alloy sheets during annealing. Mater Charact 157:109918. https://doi.org/10.1016/j.matchar.2019.109918

    Article  CAS  Google Scholar 

  33. He LZ, Li XH, Liu XT, Wang XJ, Zhang HT, Cui JZ (2010) Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy. Mater Sci Eng A 527:7510–7518. https://doi.org/10.1016/j.msea.2010.08.077

    Article  CAS  Google Scholar 

  34. Nie ZR, Wen SP, Huang H, Li BL, Zuo TY (2011) Research progress of Er-containing aluminum alloy. Chin J Nonferr Met 21:2361–2370. https://doi.org/10.1007/s12598-011-0191-y

    Article  CAS  Google Scholar 

  35. Xu GF, Yang JJ, Jin TN, Nie ZR, Yin ZM (2006) Effects of trace rare-earth element Er on microstructure and properties of Al–5Mg alloy. Chin J Nonferr Met 16:768–774. https://doi.org/10.1016/S0379-4172(06)60085-1

    Article  CAS  Google Scholar 

  36. Wen SP, Xing BZ, Huang H, Li BL, Wang W (2009) The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy. Mater Sci Eng A 516:42–49. https://doi.org/10.1016/j.msea.2009.02.045

    Article  CAS  Google Scholar 

  37. Ding Y, Wu X, Gao K, Huang C, Nie Z (2020) The influence of stabilization treatment on long-term corrosion resistance and microstructure in Er and Zr containing 5083 aluminum alloy. Mater Charact 161:110143. https://doi.org/10.1016/j.matchar.2020.110143

    Article  CAS  Google Scholar 

  38. Ding Y, Gao K, Huang H et al (2019) Nucleation and evolution of β phase and corresponding intergranular corrosion transition at 100–230° C in 5083 alloy containing Er and Zr. Mater Des 174:107778. https://doi.org/10.1016/j.matdes.2019.107778

    Article  CAS  Google Scholar 

  39. Ding YS, Gao KY, Xiong XY, Huang H, Zhou DJ (2019) High corrosion resistance and strain hardening of high Mg Al-alloy with Er and Zr by using a new reverse stabilization process. Scr Mater 171:26–30. https://doi.org/10.2139/ssrn.3389488

    Article  CAS  Google Scholar 

  40. Ding YH (2019) The correlation between microstructure and corrosion and the effect of microalloyed element in Al–Mg alloy. PhD dissertation, Beijing University of Technology

  41. Zhao PH (2022) Effect of Zn/Mg ratios and microalloying on microstructure, mechanical properties and corrosion behavior in Al–Zn–Mg alloys. PhD dissertation, Beijing University of Technology

  42. Liu Y, Wu XL et al (2023) Effect of Er and Zr microalloying on microstructure and properties of Al–Zn–Mg alloy. Heat Treat Met 48:18–22

    CAS  Google Scholar 

  43. Chao H, Chen KH, Fang HC (2014) Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys. Mater Sci Eng A 610:10–16. https://doi.org/10.1016/j.msea.2014.05.021

    Article  CAS  Google Scholar 

  44. Wang Y, Wu X, Cao L, Tong X, Couper MJ, Liu Q (2020) Effect of trace Er on the microstructure and properties of Al–Zn–Mg–Cu–Zr alloys during heat treatments. Mater Sci Eng A 792:139807. https://doi.org/10.1016/j.msea.2020.139807

    Article  CAS  Google Scholar 

  45. Wu H (2017) Study on the microstructure and properties of an Al–Zn–Mg–Cu alloy by multi-microalloying with Er and Zr. PhD dissertation, Beijing University of Technology

  46. Hyer H, Zhou L, Mehta A, Park S, Sohn Y (2021) Composition-dependent solidification cracking of aluminum–silicon alloys during laser powder bed fusion. Acta Mater 208:116698. https://doi.org/10.1016/j.actamat.2021.116698

    Article  CAS  Google Scholar 

  47. Zhou L, Pan H, Holden H et al (2019) Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion. Scr Mater 158:24–28. https://doi.org/10.1016/j.scriptamat.2018.08.025

    Article  CAS  Google Scholar 

  48. Cassiopée G, Guen EL, Lacoste E, Arvieu C (2018) Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences. Addit Manuf 22:165–175. https://doi.org/10.1016/j.addma.2018.05.005

    Article  CAS  Google Scholar 

  49. Zhang H, Gu D, Dai D, Ma C, Yang B (2020) Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al–Mg alloy produced by selective laser melting. Mater Sci Eng A 788:139593. https://doi.org/10.1016/j.msea.2020.139593

    Article  CAS  Google Scholar 

  50. Qin ZH, Kang N, Wang ZH et al (2021) Role of defects on the high cycle fatigue behavior of selective laser melted Al–Mg–Sc–Zr alloy. Int J Fract 235:129–143. https://doi.org/10.1007/s10704-021-00593-0

    Article  Google Scholar 

  51. Yang KV, Shi Y, Palm F, Wu X, Rometsch P (2018) Columnar to equiaxed transition in Al–Mg(–Sc)–Zr alloys produced by selective laser melting. Scr Mater 145:113–117. https://doi.org/10.1016/j.scriptamat.2017.10.021

    Article  CAS  Google Scholar 

  52. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strength aluminum alloys. Nature 549:365–369. https://doi.org/10.1038/nature23894

    Article  CAS  PubMed  Google Scholar 

  53. Rao JH, Zhang Y, Zhang K, Wu X, Huang A (2019) Selective laser melted Al–7Si–0.6Mg alloy with in-situ precipitation via platform heating for residual strain removal. Mater Des 182:108005. https://doi.org/10.1016/j.matdes.2019.108005

    Article  CAS  Google Scholar 

  54. Spierings AB, Dawson K, Dumitraschkewitz P, Pogatscher S, Wegener K (2017) Microstructure characterization of SLM-processed Al–Mg–Sc–Zr alloy in the heat treated and HIPed condition. Mater Sci Eng A 701:264–273. https://doi.org/10.1016/j.addma.2017.12.011

    Article  CAS  Google Scholar 

  55. Li RD, Wang MB, Li ZM, Peng C, Yuan TC, Zhu HB (2020) Developing a high-strength Al–Mg–Si–Sc–Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Mater 193:83–98. https://doi.org/10.1016/j.actamat.2020.03.060

    Article  CAS  Google Scholar 

  56. Guo Y, Wei W, Shi W, Zhang B, Zhou X, Wen S et al (2022) Effect of Er and Zr additions and aging treatment on grain refinement of aluminum alloy fabricated by laser powder bed fusion. J Alloys Compd 912:165237. https://doi.org/10.1016/j.jallcom.2022.165237

    Article  CAS  Google Scholar 

  57. Guo YW, Wei W, Shi W, Xue D, Zhou XR, Wen SP et al (2022) Selective laser melting of Er modified AlSi7Mg alloy: effect of processing parameters on forming quality, microstructure and mechanical properties. Mater Sci Eng A 842:143085. https://doi.org/10.1016/j.msea.2022.143085

    Article  CAS  Google Scholar 

  58. Colombo M, Gariboldi E, Morri A (2017) Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al–7Si–0.4Mg alloy modified with 0.25%Er. Mater Sci Eng A 713:151–160. https://doi.org/10.1016/j.msea.2017.12.068

    Article  CAS  Google Scholar 

  59. Sun YW, Wang JL, Shi Y et al (2023) An SLM-processed Er- and Zr-modified Al–Mg alloy: microstructure and mechanical properties at room and elevated temperatures. Mater Sci Eng A 883:145485. https://doi.org/10.1016/j.msea.2023.145485

    Article  CAS  Google Scholar 

  60. Li M, Yao S, Wang JJ, Chen Z, Zhang GF, Zhang SZ, Li Y (2022) Role of Er on the densification, microstructure and mechanical properties of 7075 aluminum alloys manufactured by laser powder bed fusion. J Mater Res Technol 20:2021–2033. https://doi.org/10.1016/j.jmrt.2022.08.004

    Article  CAS  Google Scholar 

  61. Zhang ZQ, Li DH, Li SC et al (2022) Effect of direct aging treatment on microstructure, mechanical and corrosion properties of a Si–Zr–Er modified Al–Zn–Mg–Cu alloy prepared by selective laser melting technology. Mater Charact 194:112459. https://doi.org/10.1016/j.matchar.2022.112459

    Article  CAS  Google Scholar 

  62. Li DH, Zhang ZQ, Li SC, Yang JM et al (2023) Microstructure, mechanical properties and fatigue crack growth behavior of an Al–Zn–Mg–Cu–Si–Zr–Er alloy fabricated by laser powder bed fusion. Int J Fatigue 172:107636. https://doi.org/10.1016/j.ijfatigue.2023.107636

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support from National Key Research and Development Program of China (2021YFB3704204, 2022YFB3705802, 2021YFB3700902, 2021YFB3704201, 2021YFB3704202 and 2021YFB3704205), Beijing Natural Science Foundation (2202009), R&D Program of Beijing Municipal Education Commission (KM 202110005010), Jiangsu Province Program for Commercialization of Scientific and Technological Achievements (BA2022029) and Program on Jiangsu Key Laboratory for Clad Materials (BM2014006).

Author information

Authors and Affiliations

Authors

Contributions

XW contributed to Original writing the manuscript. MS, LH contributed to References searching and sorting. SW, WW, KG contributed to Reviewing and editing the manuscript and funding acquisition. LR, XX contributed to Preparation of data and figures. HH, ZN contributed to Supervision and funding acquisition.

Corresponding author

Correspondence to Zuoren Nie.

Ethics declarations

Conflict of interest

All authors declared no conflicts of interest existed.

Ethical approval

Not applicable.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Sun, M., Hong, L. et al. Er-containing microalloyed aluminum alloys: a review. J Mater Sci 59, 9685–9696 (2024). https://doi.org/10.1007/s10853-023-09185-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09185-w

Navigation