Skip to main content
Log in

TiO2-embedded, exfoliated layers of phosphorus-doped carbon nanodot for tunable optical limiting

Journal of Materials Science Aims and scope Submit manuscript

Abstract

The coupling of TiO2 and phosphorus-doped carbon nanodot and their effective optical limiting applications are explored in the current study. The Z-scan technique is used for probing the characteristic optical limiting properties of the hybrid. It's interesting to point out that the optical limiting value of the P-CND/TiO2 hybrid in its crystalline phase (C-TiO2) displays a lower limiting threshold value (1.98 \(\times\) 1012 Wm−2) than that of TiO2 alone (2.24 \(\times\) 1012 Wm−2). The morphology of hybrids, such as the distribution of TiO2 nanoparticles on the exfoliated layers of P-CND (FE-SEM), and the characteristic bonding, Ti–O–C, of the hybrid (FT-IR), point out that there exists a synergistic coupling between the TiO2 nanoparticle and P-CND. The π-conjugated electrons and higher optical density facilitate electron/energy transfer in the hybrid. This apparently enhances the nonlinear optical absorption in C-TiO2. Compared to crystalline phase, TiO2 in the amorphous phase shows substantially lower optical limiting threshold value (1.08 \(\times\) 1012 Wm−2). This is due to the enhanced oscillation strength induced by the localised excitonic interaction. Conversely, the hybrid in the amorphous phase lowers the nonlinear optical absorption value. The results of hybrids in both crystalline and amorphous phases indicated the optical limiting tunability of the materials. This suggests the use of materials in applications such as fibre optic communication, Q-switching, laser light shielding, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Data availability

All the data that support the research findings are available and will be provided upon request.

Notes

  1. Figure 9a is reproduced with the permission from “Mathew et al., Synthesis, characterization and evaluation of tunable thermal diffusivity of phosphorus-doped carbon nanodot, Applied Physics A: Materials Science and Processing, 126, 1–9, 2020, Springer nature”.

References

  1. Guo B, Lan Xiao Q, Hao Wang S, Zhang H (2019) 2D layered materials: synthesis, nonlinear optical properties and device applications. Laser Photon Rev 13:1800327. https://doi.org/10.1002/lpor.201800327

    Article  CAS  Google Scholar 

  2. Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z (2018) Nonlinear optics with 2D layered materials. Adv Mater 30:1705963. https://doi.org/10.1002/adma.201705963

    Article  CAS  Google Scholar 

  3. Zhao W, Palffy-Muhoray P (1993) Z-scan technique using top-hat beams. Appl Phys Lett 63:1613–1615. https://doi.org/10.1063/1.110712

    Article  Google Scholar 

  4. Liu X, Guo Q, Qiu J (2017) Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv Mater 29:1605886. https://doi.org/10.1002/adma.201605886

    Article  CAS  Google Scholar 

  5. Lid H, Linb F, Maob S (1995) Picosecond pulse induced NLO response of fullerene glass. J Lumin 66:128–132. https://doi.org/10.1016/0022-2313(95)00123-9

    Article  Google Scholar 

  6. Yin K, Lu D, Tian W, Zhang R, Yu H, Gorecka E, Pociecha D, Godbert N, Hao J, Li H (2020) Ordered structures of alkylated carbon dots and their applications in nonlinear optics. J Mater Chem C Mater 8:8980–8991. https://doi.org/10.1039/d0tc01867h

    Article  CAS  Google Scholar 

  7. Zheng C, Huang L, Guo Q, Chen W, Li W, Wang H (2018) Facile one-step fabrication of up conversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses. RSC Adv 8:10267–10276. https://doi.org/10.1039/c8ra00390d

    Article  CAS  Google Scholar 

  8. Castro HPS, Pereira MK, Ferreira VC, Hickmann JM, Correia RRB (2017) Optical characterization of carbon quantum dots in colloidal suspensions. Opt Mater Express 7:401. https://doi.org/10.1364/ome.7.000401

    Article  CAS  Google Scholar 

  9. Muhammad S, Xu HL, Zhong RL, Su ZM, Al-Sehemi AG, Irfan A (2013) Quantum chemical design of nonlinear optical materials by sp 2-hybridized carbon nanomaterials: Issues and opportunities. J Mater Chem C Mater 1:5439–5449. https://doi.org/10.1039/c3tc31183j

    Article  CAS  Google Scholar 

  10. Zhang YX, Wang YH (2017) Nonlinear optical properties of metal nanoparticles: a review. RSC Adv 7:45129–45144. https://doi.org/10.1039/c7ra07551k

    Article  CAS  Google Scholar 

  11. Tan D, Yamada Y, Zhou S, Shimotsuma Y, Miura K, Qiu J (2014) Carbon nanodots with strong nonlinear optical response. Carbon 69:638–640. https://doi.org/10.1016/j.carbon.2013.12.056

    Article  CAS  Google Scholar 

  12. Bai L, Qiao S, Fang Y, Tian J, McLeod J, Song Y, Huang H, Liu Y, Kang Z (2016) Third-order nonlinear optical properties of carboxyl group dominant carbon nanodots. J Mater Chem C Mater 4:8490–8495. https://doi.org/10.1039/c6tc02313d

    Article  CAS  Google Scholar 

  13. Huang L, Zheng C, Guo Q, Huang D, Wu X, Chen L (2018) Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses. Opt Mater (Amst) 76:335–343. https://doi.org/10.1016/j.optmat.2017.12.051

    Article  CAS  Google Scholar 

  14. Xu H, Yan L, Yu Y, Xu Y (2018) Facile synthesis of carbon-supported silver nanoparticles for optical limiting. Appl Surf Sci 457:655–661. https://doi.org/10.1016/j.apsusc.2018.07.006

    Article  CAS  Google Scholar 

  15. Fan W, He J, Wei H, Zhang C, Zhu M, Xu D, Xiao S, He J, Chen Z, Meng J (2022) Broadband nonlinear optical properties of red fluorescent carbon dots. Results Phys 38:105591. https://doi.org/10.1016/J.RINP.2022.105591

    Article  Google Scholar 

  16. Bourlinos AB, Karakassides MA, Kouloumpis A, Gournis D, Bakandritsos A, Papagiannouli I, Aloukos P, Couris S, Hola K, Zboril R, Krysmann M, Giannelis EP (2013) Synthesis, characterization and non-linear optical response of organophilic carbon dots. Carbon 61:640–643. https://doi.org/10.1016/j.carbon.2013.05.017

    Article  CAS  Google Scholar 

  17. Saravanan M, Sabari Girisun T (2017) Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures. Appl Surf Sci 392:904–911. https://doi.org/10.1016/j.apsusc.2016.09.109

    Article  CAS  Google Scholar 

  18. Karatay A, Donar YO, Sınağ A, Elmali A (2018) Controlling the nonlinear absorption characteristics of TiO2/carbon nanocomposites on films. Opt Laser Technol 108:510–514. https://doi.org/10.1016/j.optlastec.2018.07.028

    Article  CAS  Google Scholar 

  19. Deng Y, Chen M, Chen G, Zou W, Zhao Y, Zhang H, Zhao Q (2021) Visible-ultraviolet upconversion carbon quantum dots for enhancement of the photocatalytic activity of titanium dioxide. ACS Omega 6:4247–4254. https://doi.org/10.1021/acsomega.0c05182

    Article  CAS  Google Scholar 

  20. Padmanabhan NT, Jayaraj MK, John H (2020) Graphene hybridized high energy faceted titanium dioxide for transparent self-cleaning coatings. Catal Today 348:63–71. https://doi.org/10.1016/j.cattod.2019.09.029

    Article  CAS  Google Scholar 

  21. Irshad MA, Nawaz R, Ur Rehman MZ, Adrees M, Rizwan M, Ali S, Ahmad S, Tasleem S (2021) Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: a review. Ecotoxicol Environ Saf 212:111978. https://doi.org/10.1016/j.ecoenv.2021.111978

    Article  CAS  Google Scholar 

  22. Banerjee I, Panda TK (2021) Recent advances in the carbon-phosphorus (C-P) bond formation from unsaturated compounds by s- And p-block metals. Org Biomol Chem 19:6571–6587. https://doi.org/10.1039/d1ob01019k

    Article  CAS  Google Scholar 

  23. Chu H, Li D, Dong L, Zhao S, Wang X, Li Y (2021) Enhanced broadband nonlinear optical response of TiO2/CuO nanosheets via oxygen vacancy engineering. Nanophotonics 10:1541–1551. https://doi.org/10.1515/nanoph-2020-0649

    Article  CAS  Google Scholar 

  24. Mathew RM, John J, Zachariah ES, Jose J, Titus T, Abraham R, Joseph A, Thomas V (2020) Metal free, phosphorus doped carbon nanodot mediated photocatalytic reduction of methylene blue. React Kinet Mech Catal 129:1131–1143. https://doi.org/10.1007/s11144-020-01724-9

    Article  CAS  Google Scholar 

  25. Saleem H, Haneef M, Abbasi HY (2018) Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater Chem Phys 204:1–7. https://doi.org/10.1016/j.matchemphys.2017.10.020

    Article  CAS  Google Scholar 

  26. Huang H, De Silva KKH, Kumara GRA, Yoshimura M (2018) Structural evolution of hydrothermally derived reduced graphene oxide. Sci Rep 8:2–10. https://doi.org/10.1038/s41598-018-25194-1

    Article  CAS  Google Scholar 

  27. Zhao X, Li M, Dong H, Liu Y, Hu H, Cai Y, Liang Y, Xiao Y, Zheng M (2017) Interconnected 3 D network of graphene-oxide nanosheets decorated with carbon dots for high-performance supercapacitors. Chemsuschem 10:2626–2634. https://doi.org/10.1002/cssc.201700474

    Article  CAS  Google Scholar 

  28. Papaioannou N, Marinovic A, Yoshizawa N, Goode AE, Fay M, Khlobystov A, Titirici MM, Sapelkin A (2018) Structure and solvents effects on the optical properties of sugar-derived carbon nanodots. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-25012-8

    Article  CAS  Google Scholar 

  29. Navarro-Pardo F, Martínez-Barrera G, Martínez-Hernández AL, Castaño VM, Rivera-Armenta JL, Medellín-Rodríguez F, Velasco-Santos C (2013) Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials 6:3494–3513. https://doi.org/10.3390/ma6083494

    Article  Google Scholar 

  30. Yu J, Zhang C, Yang Y, Su T, Yi G, Zhang X (2021) Facile synthesis of molecularly imprinted black TiO2-x/carbon dots nanocomposite and its recognizable photocatalytic performance under visible-light. Appl Surf Sci 551:149476. https://doi.org/10.1016/j.apsusc.2021.149476

    Article  CAS  Google Scholar 

  31. Divya R, Manikandan N, Sabari Girisun TC, Vinitha G (2020) Investigations on the structural, morphological, linear and third order nonlinear optical properties of manganese doped zinc selenide nanoparticles for optical limiting application. Opt Mater (Amst) 100:109641. https://doi.org/10.1016/j.optmat.2019.109641

    Article  CAS  Google Scholar 

  32. Kibasomba PM, Dhlamini S, Maaza M, Liu CP, Rashad MM, Rayan DA, Mwakikunga BW (2018) Strain and grain size of TiO2 nanoparticles from TEM Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method. Results Phys 9:628–635. https://doi.org/10.1016/j.rinp.2018.03.008

    Article  Google Scholar 

  33. Kumar A, Kumar R, Verma N, Anupama AV, Choudhary HK, Philip R, Sahoo B (2020) Effect of the band gap and the defect states present within band gap on the non-linear optical absorption behaviour of yttrium aluminium iron garnets. Opt Mater (Amst) 108:110163. https://doi.org/10.1016/j.optmat.2020.110163

    Article  CAS  Google Scholar 

  34. Negi C, Kandwal P, Rawat J, Sharma M, Sharma H, Dalapati G, Dwivedi C (2021) Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity. Appl Surf Sci 554:149553. https://doi.org/10.1016/j.apsusc.2021.149553

    Article  CAS  Google Scholar 

  35. Scarisoreanu M, Ilie A, Dutu E, Badoi A, Dumitrache F, Tanasa E, Mihailescu CN, Mihailescu I (2019) Direct nanocrystallite size investigation in microstrained mixed phase TiO 2 nanoparticles by PCA of Raman spectra. Appl Surf Sci 470:507–519. https://doi.org/10.1016/j.apsusc.2018.11.122

    Article  CAS  Google Scholar 

  36. Riaz R, Ali M, Anwer H, Ko MJ, Jeong SH (2019) Highly porous self-assembly of nitrogen-doped graphene quantum dots over reduced graphene sheets for photo-electrocatalytic electrode. J Colloid Interface Sci 557:174–184. https://doi.org/10.1016/j.jcis.2019.09.028

    Article  CAS  Google Scholar 

  37. Özgür ME, Balcıoğlu S, Ulu A, Özcan İ, Okumuş F, Köytepe S, Ateş B (2018) The in vitro toxicity analysis of titanium dioxide (TiO2) nanoparticles on kinematics and biochemical quality of rainbow trout sperm cells. Environ Toxicol Pharmacol 62:11–19. https://doi.org/10.1016/j.etap.2018.06.002

    Article  CAS  Google Scholar 

  38. Li Z, Hou B, Xu Y, Wu D, Sun Y (2005) Hydrothermal synthesis, characterization, and photocatalytic performance of silica-modified titanium dioxide nanoparticles. J Colloid Interface Sci 288:149–154. https://doi.org/10.1016/j.jcis.2005.02.082

    Article  CAS  Google Scholar 

  39. Wang A, Yu W, Fang Y, Song Y, Jia D, Long L, Cifuentes MP, Humphrey MG, Zhang C (2015) Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites. Carbon 89:130–141. https://doi.org/10.1016/j.carbon.2015.03.037

    Article  CAS  Google Scholar 

  40. Ramachandran P, Lee CY, Doong RA, Oon CE, Kim Thanh NT, Lee HL (2020) A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: synthesis, characterisation, and cell viability evaluation. RSC Adv 10:21795–21805. https://doi.org/10.1039/d0ra02907f

    Article  CAS  Google Scholar 

  41. Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J (1992) Handbook of X-ray photoelectron spectroscopy a reference book of standard spectra for identification and interpretation of XPS data. Perkin-Elmer Corporation, USA

    Google Scholar 

  42. Anirudhan TS, Christa J, Shainy F (2020) Magnetic titanium dioxide embedded molecularly imprinted polymer nanocomposite for the degradation of Diuron under visible light. React Funct Polym 152:104597. https://doi.org/10.1016/j.reactfunctpolym.2020.104597

    Article  CAS  Google Scholar 

  43. Besançon M, Wang Y, Ylla N, Cinquin V, Mutin H, Alauzun J, Espuche E, Bounor-Legaré V (2021) Non-hydrolytic sol–gel synthesis of polypropylene/TiO2 composites by reactive extrusion. J Solgel Sci Technol 99:39–54. https://doi.org/10.1007/s10971-021-05548-4

    Article  CAS  Google Scholar 

  44. Wang P, Yin G, Bi Q, Huang X, Du X, Zhao W, Huang F (2018) Efficient photocatalytic reduction of CO2 using carbon-doped amorphous titanium oxide. ChemCatChem 10:3854–3861. https://doi.org/10.1002/cctc.201800476

    Article  CAS  Google Scholar 

  45. Zheng F, Wang Z, Chen J, Li S (2014) Synthesis of carbon quantum dot-surface modified P25 nanocomposites for photocatalytic degradation of p-nitrophenol and acid violet 43. RSC Adv 4:30605–30609. https://doi.org/10.1039/c4ra02707h

    Article  CAS  Google Scholar 

  46. Hamamoto N, Tatsumi T, Takao M, Toyao T, Hinuma Y, Shimizu KI, Kamachi T (2021) Effect of oxygen vacancies on adsorption of small molecules on anatase and rutile TiO2surfaces: a frontier orbital approach. J Phys Chem C 125:3827–3844. https://doi.org/10.1021/acs.jpcc.0c09614

    Article  CAS  Google Scholar 

  47. Iatsunskyi I, Gottardi G, Micheli V, Canteri R, Coy E, Bechelany M (2021) Atomic layer deposition of palladium coated TiO2/Si nanopillars: ToF-SIMS, AES and XPS characterization study. Appl Surf Sci 542:148603. https://doi.org/10.1016/j.apsusc.2020.148603

    Article  CAS  Google Scholar 

  48. Atuchin VV, Kesler VG, Pervukhina NV, Zhang Z (2006) Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. J Electron Spectros Relat Phenom 152:18–24. https://doi.org/10.1016/j.elspec.2006.02.004

    Article  CAS  Google Scholar 

  49. Chinh VD, Broggi A, Di Palma L, Scarsella M, Speranza G, Vilardi G, Thang PN (2018) XPS spectra analysis of Ti2+, Ti3+ ions and dye photodegradation evaluation of titania-silica mixed oxide nanoparticles. J Electron Mater 47:2215–2224. https://doi.org/10.1007/s11664-017-6036-1

    Article  CAS  Google Scholar 

  50. Cheng G, Liu X, Song X, Chen X, Dai W, Yuan R, Fu X (2020) Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: synergic effect of Fe and oxygen vacancies. Appl Catal B 277:119196. https://doi.org/10.1016/j.apcatb.2020.119196

    Article  CAS  Google Scholar 

  51. Mathew RM, Zachariah ES, Jose J, Thomas T, John J, Titus T, Unni NG, Mathew S, Mujeeb A, Thomas V (2020) Synthesis, characterization and evaluation of tunable thermal diffusivity of phosphorus-doped carbon nanodot. Appl Phys A Mater Sci Process 126:1–9. https://doi.org/10.1007/s00339-020-04014-2

    Article  CAS  Google Scholar 

  52. Park Y, Yoo J, Lim B, Kwon W, Rhee SW (2016) Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A Mater 4:11582–11603. https://doi.org/10.1039/c6ta04813g

    Article  CAS  Google Scholar 

  53. Feng X, Wang P, Hou J, Qian J, Ao Y, Wang C (2018) Significantly enhanced visible light photocatalytic efficiency of phosphorus doped TiO2 with surface oxygen vacancies for ciprofloxacin degradation: synergistic effect and intermediates analysis. J Hazard Mater 351:196–205. https://doi.org/10.1016/j.jhazmat.2018.03.013

    Article  CAS  Google Scholar 

  54. Zhao Y, Liu X, Yang Y, Kang L, Yang Z, Liu W, Chen L (2015) Carbon dots: from intense absorption in visible range to excitation-independent and excitation-dependent photoluminescence. Fuller Nanotub Carbon Nanostruct 23:922–929. https://doi.org/10.1080/1536383X.2015.1018413

    Article  CAS  Google Scholar 

  55. Wang S, Gao H, Fang L, Hu Q, Sun G, Chen X, Yu C, Tang S, Yu X, Zhao X, Sun G, Yang H (2021) Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chem Eng J Adv 6:100089. https://doi.org/10.1016/j.ceja.2021.100089

    Article  CAS  Google Scholar 

  56. Sun S, Song P, Cui J, Liang S (2019) Amorphous TiO2 nanostructures: synthesis, fundamental properties and photocatalytic applications. Catal Sci Technol 9:4198–4215. https://doi.org/10.1039/c9cy01020c

    Article  CAS  Google Scholar 

  57. Gonçalves MC, Pereira JC, Matos JC, Vasconcelos HC (2018) Photonic band gap and bactericide performance of amorphous sol-gel Titania: an alternative to crystalline TiO2. Molecules 23:1677. https://doi.org/10.3390/molecules23071677

    Article  CAS  Google Scholar 

  58. Koe WS, Chong WC, Pang YL, Koo CH, Ebrahim M, Mohammad AW (2020) Novel nitrogen and sulphur co-doped carbon quantum dots/titanium oxide photocatalytic membrane for in-situ degradation and removal of pharmaceutical compound. J Water Process Eng 33:101068. https://doi.org/10.1016/j.jwpe.2019.101068

    Article  Google Scholar 

  59. Zhang LY, Han YL, Yang JJ, Deng SL, Wang BY (2021) Construction and photocatalysis of carbon quantum dots/layered mesoporous titanium dioxide (CQDs/LM-TiO2) composites. Appl Surf Sci 546:149089. https://doi.org/10.1016/j.apsusc.2021.149089

    Article  CAS  Google Scholar 

  60. Hari M, Ani Joseph S, Mathew S, Radhakrishnan P, Nampoori VPN (2012) Band-gap tuning and nonlinear optical characterization of Ag: TiO2 nanocomposites. J Appl Phys 112:074307. https://doi.org/10.1063/1.4757025

    Article  CAS  Google Scholar 

  61. Yan X, Yuan K, Lu N, Xu H, Zhang S, Takeuchi N, Kobayashi H, Li R (2017) The interplay of sulfur doping and surface hydroxyl in band gap engineering: mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. Appl Catal B 218:20–31. https://doi.org/10.1016/j.apcatb.2017.06.022

    Article  CAS  Google Scholar 

  62. Dimitrov V, Komatsu T (2002) Classification of simple oxides: a polarizability approach. J Solid State Chem 163:100–112. https://doi.org/10.1006/jssc.2001.9378

    Article  CAS  Google Scholar 

  63. Morsi MA, Abdelghany AM (2017) UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater Chem Phys 201:100–112. https://doi.org/10.1016/j.matchemphys.2017.08.022

    Article  CAS  Google Scholar 

  64. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J Mater Sci Mater Electron 30:12275–12294. https://doi.org/10.1007/s10854-019-01587-4

    Article  CAS  Google Scholar 

  65. Vani P, Vinitha G, Naseer KA, Marimuthu K, Durairaj M, Sabari Girisun TC, Manikandan N (2021) Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations. J Mater Sci Mater Electron 32:23030–23046. https://doi.org/10.1007/s10854-021-06787-5

    Article  CAS  Google Scholar 

  66. Innocenzi P, Lebeau B (2005) Organic-inorganic hybrid materials for non-linear optics. J Mater Chem 15:3821–3831. https://doi.org/10.1039/b506028a

    Article  CAS  Google Scholar 

  67. Wu X, Wang R, Zou B, Wu P, Wang L, Xu J, Huang W (1997) The effects of different interfacial environments on the optical nonlinearity of nanometer-sized CdO organosol. Appl Phys Lett 71:2097–2099. https://doi.org/10.1063/1.120424

    Article  CAS  Google Scholar 

  68. Yuwono AH, Xue J, Wang J, Elim HI, Ji W, Li Y, White TJ (2003) Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J Mater Chem 13:1475–1479. https://doi.org/10.1039/b211976e

    Article  CAS  Google Scholar 

  69. Migliorini F, Belmuso S, Dondè R, De Iuliis S, Altman I (2022) To optical properties of carbon nanoparticles: a need in comprehending Urbach energy. Carbon Trends 8:100184. https://doi.org/10.1016/J.CARTRE.2022.100184

    Article  CAS  Google Scholar 

  70. Dadhich BK, Bhattacharya S, Ballav S, Bhushan B, Datta PK, Priyam A (2020) Femtosecond-laser-induced saturable absorption and optical limiting of hollow silver nanocubes: implications for optical switching and bioimaging. ACS Appl Nano Mater 3:11620–11629. https://doi.org/10.1021/acsanm.0c02776

    Article  CAS  Google Scholar 

  71. Van Stryland EW, Sheik-Bahae M (1997) Z-scan technique for nonlinear materials characterization. Materials characterization and optical probe techniques: a critical review. SPIE, Bellingham, pp 488–511

    Google Scholar 

  72. Papagiannouli I, Bourlinos AB, Bakandritsos A, Couris S (2014) Nonlinear optical properties of colloidal carbon nanoparticles: Nanodiamonds and carbon dots. RSC Adv 4:40152–40160. https://doi.org/10.1039/c4ra04714a

    Article  CAS  Google Scholar 

  73. Yu Y, Si J, Yan L, Li M, Hou X (2019) Enhanced nonlinear absorption and ultrafast carrier dynamics in graphene/gold nanoparticles nanocomposites. Carbon 148:72–79. https://doi.org/10.1016/j.carbon.2019.03.054

    Article  CAS  Google Scholar 

  74. Gu B, Fan YX, Chen J, Wang HT, He J, Ji W (2007) Z-scan theory of two-photon absorption saturation and experimental evidence. J Appl Phys 102:083101. https://doi.org/10.1063/1.2795997

    Article  CAS  Google Scholar 

  75. Dadhich BK, Bhattacharya S, Ballav S, Bhushan B, Kumar Datta P, Priyam A (2020) Femtosecond laser-induced saturable absorption and optical limiting of hollow silver nanocubes: implications for optical switching and bioimaging. ACS Appl Nano Mater 3:11620–11629. https://doi.org/10.1021/acsanm.0c02776

    Article  CAS  Google Scholar 

  76. Bhattachraya S, Maiti R, Das AC, Saha S, Mondal S, Ray SK, Bhaktha SNB, Datta PK (2016) Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction. J Appl Phys 120:013101. https://doi.org/10.1063/1.4955140

    Article  CAS  Google Scholar 

  77. Wang S, Dong Y, He C, Gao Y, Jia N, Chen Z, Song W (2017) The role of sp2/sp3 hybrid carbon regulation in the nonlinear optical properties of graphene oxide materials. RSC Adv 7:53643–53652. https://doi.org/10.1039/c7ra10505c

    Article  CAS  Google Scholar 

  78. Liu L, Wang L, Gao J, Zhao J, Gao X, Chen Z (2012) Amorphous structural models for graphene oxides. Carbon 50:1690–1698. https://doi.org/10.1016/j.carbon.2011.12.014

    Article  CAS  Google Scholar 

  79. Saravanan M, Girisun TCS (2015) Nonlinear optical absorption and optical limiting properties of cadmium ferrite. Mater Chem Phys 160:413–419. https://doi.org/10.1016/j.matchemphys.2015.05.009

    Article  CAS  Google Scholar 

  80. Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA (2012) Properties of amorphous and crystalline titanium dioxide from first principles. J Mater Sci 47:7515–7521. https://doi.org/10.1007/s10853-012-6439-6

    Article  CAS  Google Scholar 

  81. Hanamura E (1988) Very large optical nonlinearity of semiconductor microcrysta1lites. Phys Rev B 37:1273. https://doi.org/10.1103/PhysRevB.37.1273

    Article  CAS  Google Scholar 

  82. Durairaj M, Sabari Girisun TC (2023) Demonstration of enhanced saturable absorption in upconverter integrated MoS2 heterostructure thin film using nanopulsed green laser. Phys Status Solidi B. https://doi.org/10.1002/pssb.202300216

    Article  Google Scholar 

  83. Krishna Mariserla BM, Alee KS, Kasthuri S, Gawas P, Rao DN, Nutalapati V (2020) Broadband optical power limiting with the decoration of TiO2 nanoparticles on graphene oxide. Opt Mater 109:110366. https://doi.org/10.1016/j.optmat.2020.110366

    Article  CAS  Google Scholar 

  84. Karaca M, Eroğlu Z, Açışlı Ö, Metin Ö, Karaca S (2023) Boosting tetracycline degradation with an S-scheme heterojunction of N-doped carbon quantum dots-decorated TiO2. ACS Omega 8:26597–26609. https://doi.org/10.1021/acsomega.3c03532

    Article  CAS  Google Scholar 

  85. Kumar R, Kumar A, Verma N, Anupama AV, Philip R, Sahoo B (2019) Modulating non-linear optical absorption through controlled graphitization of carbon nanostructures containing Fe3C-graphite core-shell nanoparticles. Carbon 153:545–556. https://doi.org/10.1016/j.carbon.2019.07.058

    Article  CAS  Google Scholar 

  86. Rajabi M, Abrinaei F (2019) High nonlinear optical response of Lanthanum-doped TiO2 nanorod arrays under pulsed laser irradiation at 532 nm. Opt Laser Technol 109:131–138. https://doi.org/10.1016/j.optlastec.2018.07.075

    Article  CAS  Google Scholar 

  87. Divya R, Manikandan N, Sabari Girisun TC, Vinitha G (2020) Investigations on the structural, morphological, linear and third order nonlinear optical properties of manganese doped zinc selenide nanoparticles for optical limiting application. Opt Mater 100:109641. https://doi.org/10.1016/j.optmat.2019.109641

    Article  CAS  Google Scholar 

  88. Habeeba AU, Saravanan M, Girisun TCS, Anandan S (2021) Nonlinear optical studies of conjugated organic dyes for optical limiting applications. J Mol Struct 1240:130559. https://doi.org/10.1016/j.molstruc.2021.130559

    Article  CAS  Google Scholar 

  89. Kumar MS, Yasoda KY, Kumaresan D, Kothurkar NK, Batabyal SK (2018) TiO2-carbon quantum dots (CQD) nanohybrid: enhanced photocatalytic activity. Mater Res Express 5:075502. https://doi.org/10.1088/2053-1591/aacbb9

    Article  CAS  Google Scholar 

  90. Liu ZB, Zhang XL, Yan XQ, Chen YS, Tian JG (2012) Nonlinear optical properties of graphene-based materials. Chin Sci Bull 57:2971–2982. https://doi.org/10.1007/s11434-012-5270-4

    Article  CAS  Google Scholar 

  91. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem Rev 94(1):243–278. https://doi.org/10.1021/cr00025a008

    Article  CAS  Google Scholar 

  92. Kumara K, Shetty TCS, Maidur SR, Patil PS, Dharmaprakash SM (2019) Continuous wave laser induced nonlinear optical response of nitrogen doped graphene oxide. Optik 178:384–393. https://doi.org/10.1016/j.ijleo.2018.09.181

    Article  CAS  Google Scholar 

  93. Ramya M, Nideep TK, Nampoori VPN, Kailasnath M (2021) Shape dependent heat transfer and nonlinear optical limiting characteristics of water stable ZnO nanofluid. Surf Interfaces 26:101345. https://doi.org/10.1016/j.surfin.2021.101345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Science Engineering Research Board (SERB) (EMR/2017/000178) (Govt. of India) Department of Science and Technology (DST) (SR/FST/college 202/2014), and KSCSTE (607/2015/KSCSTE) Government of Kerala for financial assistance in the form of research grants. Raji Mary Mathew acknowledges University Grant commission to provide research grant in the form of Savitribai Jyotirao Phule scholarship (UGCES-22-GE-KER-F-SJSGC-2629). The authors are thankful to Central laboratory for instrumentation and facility (CLIF) University of Kerala, Sophisticated analytical and instrument facility (SAIF-DST) MG university Kottayam, and Sophisticated Test and Instrumentation Centre Cochin university of science and technology for the instrumentation support.

Funding

Science Engineering Research Board, EMR/2017/000178, Vinoy Thomas, Department of Science and Technology, SR/FST/college 202/2014, University Grant Commission, UGCES-22-GE-KER-F-SJSGC-2629, Raji Mary Mathew.

Author information

Authors and Affiliations

Authors

Contributions

RMM designed and analysed the research work and formatted the manuscript. JJ carried out experimental analysis. ESZ provided experimental support. MD performed the Z-scan measurements of the samples. VT supervised the research and formatted the manuscript. TCSG provided the laboratory facility for conducting Z-scan measurement. NVU gave suggestions and support for the progression of the work.

Corresponding author

Correspondence to Vinoy Thomas.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest in financial/non-financial or personal consideration.

Ethical approval

The manuscript does not include the study of human/animal. The declaration is not applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1349 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, R.M., Jose, J., Zachariah, E.S. et al. TiO2-embedded, exfoliated layers of phosphorus-doped carbon nanodot for tunable optical limiting. J Mater Sci 58, 17765–17786 (2023). https://doi.org/10.1007/s10853-023-09153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09153-4

Navigation