Skip to main content
Log in

An all-solid-state ion-selective sensor based on polyaniline for nitrate-nitrogen detection

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nitrogen is necessary for plants to grow, but excess nitrogen fertilizer leads to pollution of soil and groundwater, so-called agricultural non-point source pollution. The development of a rapid and precise method for detecting soil nitrate-nitrogen (NO3-N) is urgently needed in order to provide guidance for fertilization. In this paper, an all-solid-state (ASS) nitrate ion-selective electrode (ISE) based on polyaniline (PANI) was fabricated. The PANI was synthesized using an all-solution method, which enables seamless integration with screen printing and ink-jet printing technologies for efficient large-scale production. The PANI-based sensor exhibited a linear response to NO3-N ranging from 1 × 10−1–1 × 10–5 M, with a sensitivity of − 58.6 ± 5.2 mV/dec and a detection limit of 1.67 × 10– 6 M. The recovery rate for the detection of NO3-N in real soil samples ranged from 96 to 104%. The PANI-based ASS-ISE also exhibits exceptional stability, reproducibility, selectivity, and remarkable pH tolerance within the range of 3.5– 10, making it well-suited for detecting various soil samples. Furthermore, the PANI-based sensors can be utilized for rapid detection of multiple elements in soil through substitution of diverse ion-selective membranes, thereby offering a more streamlined and efficient approach to environmental preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data will be made available on request.

References

  1. Zhang N, Zhang Q, Li Y, Zeng M, Li W, Chang C, Xu Y, Huang C (2020) Effect of groundcovers on reducing soil erosion and non-point source pollution in citrus orchards on red soil under frequent heavy rainfall. Sustainability 12(3):1146-1162. https://doi.org/10.3390/su12031146

    Article  CAS  Google Scholar 

  2. Cai Z, Gao S, Hendratna A, Duan Y, Xu M, Hanson BD (2016) Key factors, soil nitrogen processes, and nitrite accumulation affecting nitrous oxide emissions. Soil Sci Soc Am J 80(6):1560–1571. https://doi.org/10.2136/sssaj2016.03.0089

    Article  CAS  Google Scholar 

  3. Schilling KE, Streeter MT, Slater B, Vogelgesang J, Clair MS, Martin A (2021) Aquifer lithology affects shallow groundwater quality more than nitrogen fertilizer form and placement method in an Iowa agricultural field. Agrosyst Geosci Environ 4(2):e20163(1-11). https://doi.org/10.1002/agg2.20163

  4. Zhao C, Sheng M, Bai Y, Liu S (2021) Soil available nitrogen and phosphorus contents and the environmental impact factors across different land use types in typical karst rocky desertification area, Southwest China. Ying Yong Sheng Tai Xue Bao 32(4):1383–1392. https://doi.org/10.13287/j.1001-9332.202104.018

    Article  CAS  Google Scholar 

  5. Gao RP, Duan Y, Zhang J, Ren YF, Li HC, Liu XY, Zhao PY, Jing YP (2022) Effects of long-term application of organic manure and chemical fertilizer on soil properties and microbial communities in the agro-pastoral ecotone of North China. Front Environ Sci 10:171–178. https://doi.org/10.3389/fenvs.2022.993973

    Article  Google Scholar 

  6. Ameer S, Cheema MJM, Khan MA, Amjad M, Noor M, Wei L (2022) Delineation of nutrient management zones for precise fertilizer management in wheat crop using geo-statistical techniques. Soil Use Manag 38(3):1430–1445. https://doi.org/10.1111/sum.12813

    Article  Google Scholar 

  7. Nguyen TTN, Xu CY, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace HM, Bai SH (2017) Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288:79–96. https://doi.org/10.1016/j.geoderma.2016.11.004

    Article  CAS  Google Scholar 

  8. Emmert EM (2020) The chlorate method for the determination of nitrate nitrogen, total nitrogen, and other elements in soils and plant tissues. J Assoc Off Anal Chem 12(2):240–247. https://doi.org/10.1093/jaoac/12.2.240

    Article  Google Scholar 

  9. Koistinen J, Sjoblom M, Spilling K (2020) Total nitrogen determination by a spectrophotometric method. Methods Mol Biol 1980:81–86. https://doi.org/10.1007/7651_2019_206

    Article  CAS  Google Scholar 

  10. Veronico V, Favia P, Fracassi F, Gristina R, Sardella E (2021) Validation of colorimetric assays for hydrogen peroxide, nitrate and nitrite ions in complex plasma-treated water solutions. Plasma Process Polym 18(10):e2100062.1-e2100062.18. https://doi.org/10.1002/ppap.202100062

    Article  CAS  Google Scholar 

  11. Bhat MP, Madhuprasad, Patil P, Nataraj SK, Altalhi T, Jung H-Y, Losic D, Kurkuri MD (2016) Turmeric, naturally available colorimetric receptor for quantitative detection of fluoride and iron. Chem Eng J 303:14–21. https://doi.org/10.1016/j.cej.2016.05.113

    Article  CAS  Google Scholar 

  12. Mahishi AA, Shet SM, Mane PV, Yu J, Sowriraajan AV, Kigga M, Bhat MP, Lee K-H, Kurkuri MD (2023) Ratiometric colorimetric detection of fluoride ions using a schiff base sensor: enhancing selectivity and sensitivity for naked-eye analysis. Anal Methods 15(26):3259–3267. https://doi.org/10.1039/d3ay00541k

    Article  CAS  Google Scholar 

  13. Corbett TDW, Hartland A, Henderson W, Rys GJ, Schipper LA (2022) Toward in-field determination of nitrate concentrations via diffusive gradients in thin films-incorporation of reductants and color reagents. ACS Omega 7(13):10864–10876. https://doi.org/10.1021/acsomega.1c06120

    Article  CAS  Google Scholar 

  14. Wang C, Liu D, Bai E (2018) Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol Biochem 120:126–133. https://doi.org/10.1016/j.soilbio.2018.02.003

    Article  CAS  Google Scholar 

  15. Huang J, Jia X, Zhang H, Xi S, Liu J, Luo T, Chen H (2021) Rapid determination of the total phosphorus and the nitrate nitrogen in denitrifying phosphorus removal with iPLS and near infrared spectroscopy. Pol J Environ Stud 30(4):3077–3308. https://doi.org/10.15244/pjoes/130408

    Article  CAS  Google Scholar 

  16. Wang J-M, Zhang J-C, Zhang Z-J (2019) Rapid determination of nitrate nitrogen and nitrite nitrogen by second derivative spectrophotometry. Spectrosc Spectr Anal 39(1):161–165. https://doi.org/10.3964/j.issn.1000-0593(2019)01-0161-05

    Article  CAS  Google Scholar 

  17. Sanderman J, Savage K, Dangal SRS (2020) Mid-infrared spectroscopy for prediction of soil health indicators in the United States. Soil Sci Soc Am J 84(1):251–261. https://doi.org/10.1002/saj2.20009

    Article  CAS  Google Scholar 

  18. Piech R, Paczosa-Bator B (2016) All-solid-state nitrate selective electrode with graphene/tetrathiafulvalene nanocomposite as high redox and double layer capacitance solid contact. Electrochim Acta 210:407–414. https://doi.org/10.1016/j.electacta.2016.05.170

    Article  CAS  Google Scholar 

  19. Ufana R, Neetika S, Sayma B (2022) Theoretical studies of conducting polymers: a mini review. New J Chemistry 46(11):4954–4973. https://doi.org/10.1039/d1nj05352c

    Article  CAS  Google Scholar 

  20. De Marco R, Graeme, Clarke G, Bobby, Pejcic B (2007) Ion-selective electrode potentiometry in environmental analysis. Electroanalysis 19(19–20):1987–2001. https://doi.org/10.1002/elan.200703916

    Article  CAS  Google Scholar 

  21. Bieg C, Fuchsberger K, Stelzle M (2017) Introduction to polymer-based solid-contact ion-selective electrodes: basic concepts, practical considerations, and current research topics. Anal Bioanal Chem 409(1):45–61. https://doi.org/10.1007/s00216-016-9945-6

    Article  CAS  Google Scholar 

  22. Wardak C (2012) A comparative study of cadmium ionlogelective electrodes with solid and liquid inner contact. Electroanalysis 24(1):85–90. https://doi.org/10.1002/elan.201100362

    Article  CAS  Google Scholar 

  23. Bieg C, Fuchsberger K, Stelzle M (2017) Introduction to polymer-based solid-contact ion-selective electrodes-basic concepts, practical considerations, and current research topics. Anal Bioanal Chem 409(1):45–61. https://doi.org/10.1007/s00216-016-9945-6

    Article  CAS  Google Scholar 

  24. Piek M, Piech R, Paczosa-Bator B (2015) Improved nitrate sensing using solid contact ion selective electrodes based on TTF and its radical salt. J Electrochem Soc 162(10):B257–B263. https://doi.org/10.1149/2.0631510jes

    Article  CAS  Google Scholar 

  25. Essousi H, Barhoumi H, Bibani M, Ktari N, Kanoun O (2019) Ion-imprinted electrochemical sensor based on copper nanoparticles-polyaniline matrix for nitrate detection. J Sens 2019:1–14. https://doi.org/10.1155/2019/4257125

    Article  CAS  Google Scholar 

  26. Wu R, Li LL, Pan LJ, Yan K, Shi Y, Jiang LP, Zhu JJ (2021) Long-term cell culture and electrically in situ monitoring of living cells based on a polyaniline hydrogel sensor. J Mater Chem B 9(46):9514–9523. https://doi.org/10.1039/d1tb01885j

    Article  CAS  Google Scholar 

  27. Wen Y, Xu J (2017) Scientific importance of water-processable PEDOT-PSS and preparation, challenge and new application in sensors of its film electrode: a review. J Polym Sci A Polym Chem 55(7):1121–1150. https://doi.org/10.1002/pola.28482

    Article  CAS  Google Scholar 

  28. Bocchetta P, Frattini D, Tagliente M, Selleri F (2020) Electrochemical deposition of polypyrrole nanostructures for energy applications: a Review. Curr Nanosci 16:462–483. https://doi.org/10.2174/1573413715666190717113600

    Article  CAS  Google Scholar 

  29. Zhang H, Li Y, Zhang Y, Wu J, Li S, Li L (2023) A Disposable electrochemical sensor for lead ion detection based on in situ polymerization of conductive polypyrrole coating. J Electron Mater 52(3):1819–1828. https://doi.org/10.1007/s11664-022-10175-y

    Article  CAS  Google Scholar 

  30. Zhou HH, Wen JB, Ning XH, Fu CP, Chen JH, Kuang YF (2007) Comparison of the growth process and electrochemical properties of polyaniline films prepared by pulse potentiostatic and potentiostatic method on titanium electrode. J Appl Polym Sci 104(1):458–463. https://doi.org/10.1002/app.25770

    Article  CAS  Google Scholar 

  31. Bednarczyk K, Matysiak W, Tanski T, Janeczek H, Schab-Balcerzak E, Libera M (2021) Effect of polyaniline content and protonating dopants on electroconductive composites. Sci Rep 11(1):7487-7499. https://doi.org/10.1038/s41598-021-86950-4

    Article  CAS  Google Scholar 

  32. Zeng F, Qin Z, Liang B, Li T, Liu N, Zhu M (2015) Polyaniline nano structures tuning with oxidants in interfacial polymerization system. Prog Nat Sci-Mater Int 25(5):512–519. https://doi.org/10.1016/j.pnsc.2015.10.002

    Article  CAS  Google Scholar 

  33. Pietrzak K, Wardak C, Malinowski S (2021) Application of polyaniline nanofibers for the construction of nitrate all-solid-state ion-selective electrodes. Appl Nanosci 11(12):2823–2835. https://doi.org/10.1007/s13204-021-02228-1

    Article  CAS  Google Scholar 

  34. Thuy NTD, Wang X, Zhao G, Liang T, Zou Z (2022) A Co3O4 nanoparticle-modified screen-printed electrode sensor for the detection of nitrate ions in aquaponic systems. Sensors 22(24):9730-9746. https://doi.org/10.3390/s22249730

    Article  CAS  Google Scholar 

  35. Ali MA, Wang X, Chen Y, Jiao Y, Mahal NK, Moru S, Castellano MJ, Schnable JC, Schnable PS, Dong L (2019) Continuous monitoring of soil nitrate using a miniature sensor with poly(3-octyl-thiophene) and molybdenum disulfide nanocomposite. ACS Appl Mater Interfaces 11(32):29195–29206. https://doi.org/10.1021/acsami.9b07120

    Article  CAS  Google Scholar 

  36. Fan Y, Huang Y, Linthicum W, Liu F, Beringhs AOR, Dang Y, Xu Z, Chang S-Y, Ling J, Huey BD, Suib SL, Anson WK, Gao P-X, Lu X, Lei Y, Shaw MT, Li B (2020) Toward long-term accurate and continuous monitoring of nitrate in wastewater using poly(tetrafluoroethylene) (PTFE)-solid-state ion-selective electrodes (S-ISEs). ACS Sens 5(10):3182–3193. https://doi.org/10.1021/acssensors.0c01422

    Article  CAS  Google Scholar 

  37. Goda T, Yamada E, Katayama Y, Tabata M, Matsumoto A, Miyahara Y (2016) Potentiometric responses of ion-selective microelectrode with bovine serum albumin adsorption. Biosens Bioelectron 77:208–214. https://doi.org/10.1016/j.bios.2015.09.023

    Article  CAS  Google Scholar 

  38. Matsunaga T, Kondo T, Shitanda I, Hoshi Y, Itagaki M, Tojo T, Yuasa M (2021) Sensitive electrochemical detection of L-cysteine at a screen-printed diamond electrode. Carbon 173:395–402. https://doi.org/10.1016/j.carbon.2020.10.096

    Article  CAS  Google Scholar 

  39. Lu Y, Lan Q, Zhang C, Liu B, Wang X, Xu X, Liang X (2021) Trace-level sensing of phosphate for natural soils by a nano-screen-printed electrode. Environ Sci Technol 55(19):13093–13102. https://doi.org/10.1021/acs.est.1c05363

    Article  CAS  Google Scholar 

  40. Zeitoun R, Adamchuk V, Biswas A (2022) a novel paper-based reagentless dual functional soil test to instantly detect phosphate infield. Sensors 22(22):8803-8817. https://doi.org/10.3390/s22228803

    Article  CAS  Google Scholar 

  41. Anurag A, Al-Hamry A, Attuluri Y, Palaniyappan S, Wagner G, Dentel D, Tegenkamp C, Kanoun O (2023) Optimized reduction of a graphene oxide-mwcnt composite with electrochemically deposited copper nanoparticles on screen printed electrodes for a wide range of detection of nitrate. ChemElectroChem 10(3):e202200945(1-13). https://doi.org/10.1002/celc.202200945

  42. Zhang L, Wei Z, Liu P (2020) An all-solid-state NO3- ion-selective electrode with gold nanoparticles solid contact layer and molecularly imprinted polymer membrane. PLoS ONE 15(10):e0240173(1-14). https://doi.org/10.1371/journal.pone.0240173

  43. Yuan D, Anthis AHC, Ghahraman Afshar M, Pankratova N, Cuartero M, Crespo GA, Bakker E (2015) All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples. Anal Chems. https://doi.org/10.1021/acs.analchem.5b01941

    Article  Google Scholar 

  44. Pietrzak C (2020) Solid contact nitrate ion-selective electrode based on cobalt(ii) complex with 4,7-diphenyl-1,10-phenanthroline. Electroanalysis 32(4):724–731. https://doi.org/10.1002/elan.201900462

    Article  CAS  Google Scholar 

  45. Alvarez-Romero GA, Palomar-Pardave ME, Ramirez-Silva MT (2007) Development of a novel nitrate-selective composite sensor based on doped polypyrrole. Anal Bioanal Chem 387(4):1533–1541. https://doi.org/10.1007/s00216-006-1021-1

    Article  CAS  Google Scholar 

  46. Sookhakian M, Teridi MAM, Tong GB, Woi PM, Khalil M, Alias Y (2021) Reduced graphene oxide/copper nanoparticle composites as electrochemical sensor materials for nitrate detection. ACS Appl Nano Mater 4(11):12737–12744. https://doi.org/10.1021/acsanm.1c03351

    Article  CAS  Google Scholar 

  47. Lin PT, Araujo AN, Montenegro M, Pérez-Olmos R (2005) New PVC nitrate-selective electrode: application to vegetables and mineral waters. J Agr Food Chem 53(2):211–215. https://doi.org/10.1021/jf049227u

    Article  CAS  Google Scholar 

  48. Garland NT, McLamore ES, Cavallaro ND, Mendivelso-Perez D, Smith EA, Jing D, Claussen JC (2018) Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl Mater Interfaces 10(45):39124–39133. https://doi.org/10.1021/acsami.8b10991

    Article  CAS  Google Scholar 

  49. Wardak C (2014) Solid contact nitrate ion-selective electrode based on ionic liquid with stable and reproducible potential. Electroanalysis 26(4):864–872. https://doi.org/10.1002/elan.201300590

    Article  CAS  Google Scholar 

  50. Bakker E, Pretsch E, Bühlmann P (2000) Selectivity of potentiometric ion sensors. Anal Chem 72(6):1127–1133. https://doi.org/10.1021/ac991146n

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the 14th 5-Year Plan National Key R&D Project (2021YFD1700904-04), and the Top Talent Program of Henan Agricultural University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YL contributed to the material preparation, data curation, and the initial draft. HZ assisted in the execution of data analysis, and editing written content. JW and LL revised the study design and contributed to the finalization of the manuscript. JH, LL and SL contributed to supervision and funding acquisition.

Corresponding authors

Correspondence to Shixin Li or Lanlan Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

Not applicable.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2291 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, J., Zhang, H. et al. An all-solid-state ion-selective sensor based on polyaniline for nitrate-nitrogen detection. J Mater Sci 58, 17292–17302 (2023). https://doi.org/10.1007/s10853-023-09112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09112-z

Navigation