Skip to main content
Log in

Lewis doping strategy to synthesize Fe–N–C catalysts with high density of available active sites for oxygen reduction reactions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, non-noble metal catalysts such as Fe–N–C have received a lot of interest due to their excellent oxygen reduction (ORR) activity. However, the active sites of Fe–N–C still need to be further improved. Here, by adopting Lewis doping and double nitrogen source strategies to increase the density of accessible active sites, the catalyst exhibits excellent ORR activity. The ORR half-wave potential (E1/2) in 0.1 mol/L KOH solution can reach 0.92 V (vs. RHE), and the maximum power density of the Zn–air battery with Fe–N–C@MA-950 as the air electrode can reach 220 mW cm−2. The strategies provide a novel approach to the design of carbon-based catalysts for efficient energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available from the corresponding author, [Qinghong Huang], upon reasonable request.

References

  1. Shang H, Zhou X, Dong J, Li A, Zhao X, Liu Q, Lin Y, Pei J, Li Z, Jiang Z, Zhou D, Zheng L, Wang Y, Zhou J, Yang Z, Cao R, Sarangi R, Sun T, Yang X, Zheng X, Yan W, Zhuang Z, Li J, Chen W, Wang D, Zhang J, Li Y (2020) Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat Commun 11(1):3049

    Article  CAS  Google Scholar 

  2. Wan C, Duan X, Huang Y (2020) Molecular design of single-atom catalysts for oxygen reduction reaction. Adv Energy Mater 10(14):1903815

    Article  CAS  Google Scholar 

  3. Cui J, Chen Q, Li X, Zhang S (2021) Recent advances in non-precious metal electrocatalysts for oxygen reduction in acidic media and PEMFCs: an activity, stability and mechanism study. Green Chem 23(18):6898–6925

    Article  CAS  Google Scholar 

  4. Shen H, Thomas T, Rasaki SA, Saad A, Hu C, Wang J, Yang M (2019) Oxygen reduction reactions of Fe–N–C catalysts: current status and the way forward. Electrochem Energy Rev 2(2):252–276

    Article  CAS  Google Scholar 

  5. Kocha SS, Shinozaki K, Zack JW, Myers DJ, Kariuki NN, Nowicki T, Stamenkovic V, Kang Y, Li D, Papageorgopoulos D (2017) Best practices and testing protocols for benchmarking orr activities of fuel cell electrocatalysts using rotating disk electrode. Electrocatalysis 8(4):366–374

    Article  CAS  Google Scholar 

  6. Liu K, Chen P, Sun Z, Chen W, Zhou Q, Gao X (2023) The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production. Nano Res 16(8):10724–10741

    Article  CAS  Google Scholar 

  7. Liu K, Fu J, Lin Y, Luo T, Ni G, Li H, Lin Z, Liu M (2022) Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat Commun 13(1):2075

    Article  CAS  Google Scholar 

  8. Wang XX, Swihart MT, Wu G (2019) Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat Catal 2(7):578–589

    Article  CAS  Google Scholar 

  9. Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S (2020) Defect engineering on electrode materials for rechargeable batteries. Adv Mater 32(7):e1905923

    Article  Google Scholar 

  10. Tian X, Lu XF, Xia BY, Lou XW (2020) Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4(1):45–68

    Article  CAS  Google Scholar 

  11. Luo X, Ma H, Ren H, Zou X, Wang Y, Li X, Shen Z, Wang Y, Cui L (2021) Controllable synthesis of nitrogen-doped carbon containing Co and Co3Fe7 nanoparticles as effective catalysts for electrochemical oxygen conversion. J Colloid Interface Sci 590:622–631

    Article  CAS  Google Scholar 

  12. Mazzucato M, Gavioli L, Balzano V, Berretti E, Rizzi GA, Badocco D, Pastore P, Zitolo A, Durante C (2022) Synergistic effect of Sn and Fe in Fe-N(x) site formation and activity in Fe-N-C catalyst for ORR. ACS Appl Mater Interfaces 14(49):54635–54648

    Article  CAS  Google Scholar 

  13. Jiang R, Qiao Z, Xu H, Cao D (2023) Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction. Chin J Catal 48:224–234

    Article  CAS  Google Scholar 

  14. Wang W, Jia Q, Mukerjee S, Chen S (2019) Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials. ACS Catal 9(11):10126–10141

    Article  CAS  Google Scholar 

  15. Roh J, Cho A, Kim S, Lee K-S, Shin J, Choi JS, Bak J, Lee S, Song D, Kim E-J, Lee C, Uhm YR, Cho Y-H, Han JW, Cho E (2023) Transformation of the active moiety in phosphorus-doped fe–n–c for highly efficient oxygen reduction reaction. ACS Catal 13:9427–9441

    Article  CAS  Google Scholar 

  16. Wang Y, Wang D, Li Y (2021) Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications. Adv Mater 33(34):e2008151

    Article  Google Scholar 

  17. Sahraie NR, Kramm UI, Steinberg J, Zhang Y, Thomas A, Reier T, Paraknowitsch JP, Strasser P (2015) Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat Commun 6:8618

    Article  CAS  Google Scholar 

  18. Mazzucato M, Gavioli L, Balzano V, Berretti E, Rizzi GA, Badocco D, Pastore P, Zitolo A, Durante C (2022) Synergistic effect of Sn and Fe in Fe–Nx site formation and activity in Fe–N–C catalyst for ORR. ACS Appl Mater Interfaces 14(49):54635–54648

    Article  CAS  Google Scholar 

  19. Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G (2017) Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc 139(40):14143–14149

    Article  CAS  Google Scholar 

  20. Wang D, Li B, Tao X, Rao S, Li J, Wang W, Yang J, Zhou Y (2021) Atomically dispersed iron atoms on nitrogen-doped porous carbon catalyst with high density and accessibility for oxygen reduction. J Electroanal Chem 898:115627

    Article  CAS  Google Scholar 

  21. Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y (2017) Design of N-coordinated dual-metal sites: a stable and active Pt-Free catalyst for acidic oxygen reduction reaction. J Am Chem Soc 139(48):17281–17284

    Article  CAS  Google Scholar 

  22. Zhao M, Liu H, Zhang H, Chen W, Sun H, Wang Z, Zhang B, Song L, Yang Y, Ma C, Han Y, Huang W (2021) A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy Environ Sci 14(12):6455–6463

    Article  CAS  Google Scholar 

  23. Li B, Shi C, Zhao N, Liu E (2023) Hydrogen-bond-promoted ORR mechanism in P-doped Fe–N–C materials. J Phys Chem C 127(2):1023–1031

    Article  CAS  Google Scholar 

  24. Chen G, Liu P, Liao Z, Sun F, He Y, Zhong H, Zhang T, Zschech E, Chen M, Wu G, Zhang J, Feng X (2020) Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv Mater 32(8):e1907399

    Article  Google Scholar 

  25. Li P, Ding X, Yang Z, Chen M, Wang M, Wang X (2017) Electrochemical synthesis and characterization of polyaniline-coated PEMFC metal bipolar plates with improved corrosion resistance. Ionics 24(4):1129–1137

    Article  Google Scholar 

  26. Wang ZL, Sun K, Henzie J, Hao X, Li C, Takei T, Kang YM, Yamauchi Y (2018) Spatially confined assembly of monodisperse ruthenium nanoclusters in a hierarchically ordered carbon electrode for efficient hydrogen evolution. Angew Chem Int Ed Engl 57(20):5848–5852

    Article  CAS  Google Scholar 

  27. Feng Q, Zhao S, Xu Q, Chen W, Tian S, Wang Y, Yan W, Luo J, Wang D, Li Y (2019) Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv Mater 31(36):e1901024

    Article  Google Scholar 

  28. You C, Zen X, Qiao X, Liu F, Shu T, Du L, Zeng J, Liao S (2015) Fog-like fluffy structured N-doped carbon with a superior oxygen reduction reaction performance to a commercial Pt/C catalyst. Nanoscale 7(8):3780–3785

    Article  CAS  Google Scholar 

  29. Luo F, Roy A, Silvioli L, Cullen DA, Zitolo A, Sougrati MT, Oguz IC, Mineva T, Teschner D, Wagner S, Wen J, Dionigi F, Kramm UI, Rossmeisl J, Jaouen F, Strasser P (2020) P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat Mater 19(11):1215–1223

    Article  CAS  Google Scholar 

  30. Wan X, Liu X, Li Y, Yu R, Zheng L, Yan W, Wang H, Xu M, Shui J (2019) Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat Catal 2(3):259–268

    Article  CAS  Google Scholar 

  31. Koyuturk B, Farber EM, Wagner FE, Fellinger T-P, Eisenberg D (2022) A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe–N–C catalyst for acidic ORR. J Mater Chem A 10(37):19859–19867

    Article  CAS  Google Scholar 

  32. Zhang J, Dai L (2016) Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew Chem Int Ed Engl 55(42):13296–13300

    Article  CAS  Google Scholar 

  33. Zhou Y, Yen CH, Hu YH, Wang C, Cheng X, Wai CM, Yang J, Lin Y (2016) Making ultrafine and highly-dispersive multimetallic nanoparticles in three-dimensional graphene with supercritical fluid as excellent electrocatalyst for oxygen reduction reaction. J Mater Chem A 4(47):18628–18638

    Article  CAS  Google Scholar 

  34. Li Y, Zhong C, Liu J, Zeng X, Qu S, Han X, Deng Y, Hu W, Lu J (2018) Atomically thin mesoporous Co3 O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv Mater 30(4):1703657

    Article  Google Scholar 

  35. Li Y, Wen H, Yang J, Zhou Y, Cheng X (2019) Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: Tertiary N-precursors regulates the constitution of catalytic active sites. Carbon 142:1–12

    Article  CAS  Google Scholar 

  36. Mondal S, Malik S (2016) Easy synthesis approach of Pt-nanoparticles on polyaniline surface: an efficient electro-catalyst for methanol oxidation reaction. J Power Sources 328:271–279

    Article  CAS  Google Scholar 

  37. Liu T, Wang Y, Li Y (2023) How pH affects the oxygen reduction reactivity of Fe–N–C materials. ACS Catal 13(3):1717–1725

    Article  CAS  Google Scholar 

  38. Venegas R, Zúñiga C, Zagal JH, Toro-Labbé A, Marco JF, Menéndez N, Muñoz-Becerra K, Recio FJ (2022) Fe3O4 templated pyrolyzed Fe−N−C catalysts. Understanding the role of N-functions and Fe3C on the ORR activity and mechanism. ChemElectroChem 9(11):2022

    Google Scholar 

  39. Zhang Y, Dou C, Wang W, Wang Q, Feng N (2016) Synthesis of uniform polyaniline nanosheets and nanotubes: Dependence of morphology on the pH. Macromol Res 24(8):663–669

    Article  CAS  Google Scholar 

  40. Wang Y, Wang L, Fu H (2022) Research progress of Fe-N-C catalysts for the electrocatalytic oxygen reduction reaction. Sci China Mater 65(7):1701–1722

    Article  CAS  Google Scholar 

  41. Zhang L, Zujovic ZD, Peng H, Bowmaker GA, Kilmartin PA, Travas-Sejdic JJM (2008) Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules 41(22):8877–8884

    Article  CAS  Google Scholar 

  42. Zhang Z, Sun J, Wang F, Dai L (2018) Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew Chem Int Ed Engl 57(29):9038–9043

    Article  CAS  Google Scholar 

  43. Wei J, Xia D, Wei Y, Zhu X, Li J, Gan L (2022) Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe–N–C electrocatalysts by in situ Raman spectroscopy. ACS Catal 12:7811–7820

    Article  CAS  Google Scholar 

  44. Liu W, Yuan K, Ru Q, Zuo S, Wang L, Yang S, Han J, Yao C (2020) Functionalized halloysite template-assisted polyaniline synthesis high-efficiency iron/nitrogen-doped carbon nanotubes towards nonprecious ORR catalysts. Arab J Chem 13(4):4954–4965

    Article  CAS  Google Scholar 

  45. Li X, Yang X, Liu L, Zhao H, Li Y, Zhu H, Chen Y, Guo S, Liu Y, Tan Q, Wu G (2021) Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS Catal 11(12):7450–7459

    Article  CAS  Google Scholar 

  46. Daniel G, Foltran E, Brandiele R, Nodari L, Pilot R, Menna E, Rizzi GA, Ahmed Isse A, Durante C, Gennaro A (2018) Platinum-free electrocatalysts for oxygen reduction reaction: Fe-Nx modified mesoporous carbon prepared from biosources. J Power Sources 402:434–446

    Article  CAS  Google Scholar 

  47. Li Q, Xu P, Gao W, Ma S, Zhang G, Cao R, Cho J, Wang HL, Wu G (2014) Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O(2) batteries. Adv Mater 26(9):1378–1386

    Article  Google Scholar 

  48. Liu K, Fu J, Luo T, Ni G, Li H, Zhu L, Wang Y, Lin Z, Sun Y, Cortés E, Liu M (2023) Potential-dependent active moiety of Fe–N–C catalysts for the oxygen reduction reaction. J Phys Chem Lett 14(15):3749–3756

    Article  CAS  Google Scholar 

  49. Jerkiewicz G (2022) Applicability of platinum as a counter-electrode material in electrocatalysis research. ACS Catal 12(4):2661–2670

    Article  CAS  Google Scholar 

  50. Mazzucato M, Durante C (2022) Insights on oxygen reduction reaction to H2O2: the role of functional groups and textural properties on the activity and selectivity of doped carbon electrocatalysts. Curr Opin Electrochem 35:101051

    Article  CAS  Google Scholar 

  51. Mazzucato M, Durante C (2023) Comparative analysis of rotating electrode and gas diffusion electrode methods for assessing activity and stability of Fe-N-C based catalysts in ORR. Electrochim Acta 463:142801

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the partial financial support from the Natural Science Foundation of China (22279054).

Author information

Authors and Affiliations

Authors

Contributions

JZ contributed to writing—original draft, experimental design, data collection, and writing—review & editing. SS contributed to data curation and experimental guidance. QH contributed to the scientific conception, funding acquisition, supervision, and writing—review and editing. YL contributed to data analysis. WT contributed to formal analysis. YW and NY contributed to validation.

Corresponding author

Correspondence to Qinghong Huang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Handling Editor: Andréa de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1785 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Sun, S., Li, Y. et al. Lewis doping strategy to synthesize Fe–N–C catalysts with high density of available active sites for oxygen reduction reactions. J Mater Sci 58, 17188–17199 (2023). https://doi.org/10.1007/s10853-023-09098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09098-8

Navigation