Skip to main content
Log in

Flexible and low roughness cast films: promising candidates for capacitor applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymer-based composites filled with ceramic particles such as barium titanate (BT) or lead zirconate titanate (Pb (Zr,Ti)O3) are considered as ideal materials for energy storage capacitors in electric systems. In this study, we fabricated poly (methylmethacrylate) (PMMA)/poly (vinylidene fluoride) (PVDF) composite films filled with a small amount (10 wt%) of BT by solution casting and investigated their dielectric properties. Our results indicate that the dielectric constants and breakdown strengths of the composites are strongly influenced by the mass content of PMMA. Furthermore, the composite film exhibits excellent energy properties (Ue, ~ 9.145 J cm−3; η, ~ 73.84%) when the mass ratio of PVDF and PMMA is 5:5. These composites possess significant potential as high-performance dielectric materials for energy storage capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wang F, Luo H, Zhai D, Xiao Z, Zeng L, Wang X, Hu Z, Wang H et al (2022) Dielectric nanocomposites with high energy density by doping core-double shell structured fillers. Compos A 159:107019. https://doi.org/10.1016/j.compositesa.2022.107019

    Article  CAS  Google Scholar 

  2. Shen Y, Lin Y, Zhang QM (2015) Polymer nanocomposites with high energy storage densities. MRS Bull 40(9):753–759. https://doi.org/10.1557/mrs.2015.199

    Article  CAS  Google Scholar 

  3. Guo M, Jiang J, Shen Z, Lin Y, Nan CW, Shen Y (2019) High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater Today 29:49–67. https://doi.org/10.1016/j.mattod.2019.04.015

    Article  CAS  Google Scholar 

  4. Burlingame Q, Wu S, Lin M, Zhang QM (2013) Conduction mechanisms and structure–property relationships in high energy density aromatic polythiourea dielectric films. Adv Energy Mater 3(8):1051–1055. https://doi.org/10.1002/aenm.201201110

    Article  CAS  Google Scholar 

  5. Dou L, Yang B, Lan S, Liu Y, Liu Y, Nan CW, Lin YH (2023) High-entropy-nanofibers enhanced polymer nanocomposites for high-performance energy storage. Adv Energy Mater 13(11):1-7. https://doi.org/10.1002/aenm.2022039258]42]

    Article  Google Scholar 

  6. Huang X, Sun B, Zhu Y, Li S, Jiang P (2019) High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Mater Sci 100:187–225. https://doi.org/10.1016/j.pmatsci.2018.10.003

    Article  CAS  Google Scholar 

  7. Wu X, Chen X, Zhang QM, Tan DQ (2022) Advanced dielectric polymers for energy storage. Energy Storage Mater 44:29–47. https://doi.org/10.1016/j.ensm.2021.10.010

    Article  Google Scholar 

  8. Zhou Y, Wang Q (2020) Advanced polymer dielectrics for high temperature capacitive energy storage. J Appl Phys 127(24):1-17 https://doi.org/10.1063/5.0009650

    Article  CAS  Google Scholar 

  9. Rabuffi M, Picci G (2002) Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE T Plasma Sci 30(5):1939–1942. https://doi.org/10.1109/TPS.2002.805318

    Article  CAS  Google Scholar 

  10. Bao Z, Du X, Ding S, Chen J, Dai Z, Liu C, Wang Y, Yin Y et al (2022) Improved working temperature and capacitive energy density of biaxially oriented polypropylene films with alumina coating layers. ACS Appl Energy Mater 5(3):3119–3128. https://doi.org/10.1021/acsaem.1c03735

    Article  CAS  Google Scholar 

  11. Li Z, Treich GM, Tefferi M, Wu C, Nasreen S, Scheirey SK, Ramprasad R, Sotzing GA et al (2019) High energy density and high efficiency all-organic polymers with enhanced dipolar polarization. J Mater Chem A 7(25):15026–15030. https://doi.org/10.1039/C9TA03601F

    Article  CAS  Google Scholar 

  12. Dan Z, Jiang J, Qian J, Shen Z, Li M, Nan C, Shen Y (2019) A ferroconcrete-like all-organic nanocomposite exhibiting improved mechanical property, high breakdown strength, and high energy efficiency. Macromol Mater Eng 304(12):1–8. https://doi.org/10.1002/mame.201900433

    Article  CAS  Google Scholar 

  13. Sharma V, Wang C, Lorenzini RG et al (2014) Rational design of all organic polymer dielectrics. Nat Commun 5(1):1–8. https://doi.org/10.1038/ncomms5845

    Article  CAS  Google Scholar 

  14. Zheng MS, Zha JW, Yang Y, Han P, Hu CH, Wen YQ, Dang ZM (2017) Polyurethane induced high breakdown strength and high energy storage density in polyurethane/poly (vinylidene fluoride) composite films. Appl Phys Lett 110:1–4. https://doi.org/10.1063/1.4989579

    Article  CAS  Google Scholar 

  15. Zhang X, Hou Y, Zhang Y, Lv Z, Xu G, Xu H (2012) The effect of electroactive interlayer on the ferroelectric properties in poly (vinylidene fluoride-trifluoroethylene) copolymer ultrathin films. J Appl Phys 112:1–6. https://doi.org/10.1063/1.4757936

    Article  CAS  Google Scholar 

  16. Tomer V, Manias E, Randall CA (2011) High field properties and energy storage in nanocomposite dielectrics of poly (vinylidene fluoride-hexafluoropropylene). J Appl Phys 110:1–10. https://doi.org/10.1063/1.3609082

    Article  CAS  Google Scholar 

  17. Wang C, Zhao X, Ren L et al (2023) Enhanced dielectric and energy storage properties of P (VDF-HFP) through elevating β-phase formation under unipolar nanosecond electric pulses. Appl Phys Lett. https://doi.org/10.1063/5.0128998

    Article  Google Scholar 

  18. Xu F, Lin D, Xia W, Cao W, Chen Q, Zhang Q, Zhu G (2019) Facile and solvent-free fabrication of highly oriented ferroelectric copolymer thin films and its application in ferroelectric field effect transistors. Org Electron 64:86–91. https://doi.org/10.1016/j.orgel.2018.10.013

    Article  CAS  Google Scholar 

  19. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336. https://doi.org/10.1126/science.1127798

    Article  CAS  Google Scholar 

  20. Liu F, Li Q, Cui J et al (2017) High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv Funct Mater 27(20):1–7. https://doi.org/10.1002/adfm.201770125

    Article  CAS  Google Scholar 

  21. Chen J, Shen Z, Kang Q, Qian X, Li S, Jiang P, Huang X (2022) Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Sci Bull 67(6):609–618. https://doi.org/10.1016/j.scib.2021.10.011

    Article  CAS  Google Scholar 

  22. Jaglan N, Uniyal P (2022) On the structural, dielectric, piezoelectric, and energy storage behavior of polyvinylidene fluoride (PVDF) thick film: role of annealing temperature. J Appl Phys. https://doi.org/10.1063/5.0123674

    Article  Google Scholar 

  23. Qian X, Chen X, Zhu L, Zhang QM (2023) Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science 380(6645):eadg0902. https://doi.org/10.1126/science.adg0902

    Article  CAS  Google Scholar 

  24. Sun X, Zhang L, Zheng Y, Yang L, Deng Y, Wang Y (2022) Core–shell structured PVDF-based copolymer fiber design for high energy storage performance. J Appl Phys 132:1–11. https://doi.org/10.1063/5.0120895

    Article  CAS  Google Scholar 

  25. Liu J, Shen Z, Xu W, Zhang Y, Qian X, Jiang Z, Zhang Y (2020) Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network. Small 16(22):1–10. https://doi.org/10.1002/smll.202000714

    Article  CAS  Google Scholar 

  26. Cao Q, Zhu W, Chen W et al (2022) Nonsolid TiOx nanoparticles/PVDF nanocomposite for improved energy storage performance. ACS Appl Mater Interfaces 14(6):8226–8234. https://doi.org/10.1021/acsami.1c18544

    Article  CAS  Google Scholar 

  27. Hao Y, Wang X, Bi K et al (2017) Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy 31:49–56. https://doi.org/10.1016/j.nanoen.2016.11.008

    Article  CAS  Google Scholar 

  28. Sun W, Lu X, Jiang J et al (2017) Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J Appl Phys. https://doi.org/10.1063/1.4989973

    Article  Google Scholar 

  29. Zhang T, Li W, Zhao Y, Yu Y, Fei W (2018) High energy storage performance of opposite double-heterojunction ferroelectricity–insulators. Adv Funct Mater 28(10):1–9. https://doi.org/10.1002/adfm.201706211

    Article  CAS  Google Scholar 

  30. Wang P, Yao L, Pan Z et al (2021) Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv Mater 33(42):1–7. https://doi.org/10.1002/adma.202103338

    Article  CAS  Google Scholar 

  31. Liu F, Li Z, Wang Q, Xiong C (2018) High breakdown strength and low loss binary polymer blends of poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) and poly (methyl methacrylate). Polym Advan Technol 29(4):1271–1277. https://doi.org/10.1002/pat.4238

    Article  CAS  Google Scholar 

  32. Yang HH, Han CD, Kim JK (1994) Rheology of miscible blends of poly (methyl methacrylate) with poly (styrene-co-acrylonitrile) and with poly (vinylidene fluoride). Polymer 35(7):1503–1511. https://doi.org/10.1016/0032-3861(94)90351-4

    Article  CAS  Google Scholar 

  33. Sang X, Li X, Zhang D, Zhang X, Wang H, Li S (2022) Improved dielectric properties and energy-storage densities of BaTiO3-doped PVDF composites by heat treatment and surface modification of BaTiO3. J Phys D Appl Phys 55(21):215501. https://doi.org/10.1088/1361-6463/ac4942

    Article  Google Scholar 

  34. Kang SJ, Park YJ, Bae I, Kim KJ, Kim HC, Bauer S, Thomas EL, Park C (2009) Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv Funct Mater 19(17):2812–2818. https://doi.org/10.1002/adfm.200900589

    Article  CAS  Google Scholar 

  35. Li J, Meng Q, Li W, Zhang Z (2011) Influence of crystalline properties on the dielectric and energy storage properties of poly (vinylidene fluoride). J Appl Polym Sci 122(3):1659–1668. https://doi.org/10.1002/app.34020

    Article  CAS  Google Scholar 

  36. Miao B, Liu J, Zhang X, Lu J, Tan S, Zhang Z (2016) Ferroelectric relaxation dependence of poly (vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly (methyl methacrylate). RSC Adv 6(87):84426–84438. https://doi.org/10.1039/C6RA17977K

    Article  CAS  Google Scholar 

  37. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv 7(25):15382–15389. https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  38. Zhang C, Zhang T, Feng M et al (2021) Significantly improved energy storage performance of PVDF ferroelectric films by blending PMMA and filling PCBM. ACS Sustain Chem Eng 9(48):16291–16303. https://doi.org/10.1021/acssuschemeng.1c05597

    Article  CAS  Google Scholar 

  39. Feng Z, Hao Y, Bi M, Dai Q, Bi K (2018) Highly dispersive Ba0.6Sr0.4TiO3 nanoparticles modified P(VDF-HFP)/PMMA composite films with improved energy storage density and efficiency. IET Nanodielectrics 1(1):60–66. https://doi.org/10.1049/iet-nde.2017.0007

    Article  Google Scholar 

  40. Zhang X, Villafuerte J, Consonni V, Capsal JF, Cottinet PJ, Petit L, Le MQ (2021) Characterizing and optimizing piezoelectric response of ZnO nanowire/PMMA composite-based sensor. Nanomaterials 11:1–22. https://doi.org/10.3390/nano11071712

    Article  CAS  Google Scholar 

  41. Dang ZM, Wang HY, Xu HP (2006) Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett. https://doi.org/10.1063/1.2338529

    Article  Google Scholar 

  42. Li W, Chen M, Yang Y, Yuan D, Ren Y, Cai X (2019) Dielectric property of modified barium titanate/polyamide 11 nanocomposites with different surfactants. J Appl Polym Sci 136(18):1–9. https://doi.org/10.1002/app.47447

    Article  CAS  Google Scholar 

  43. Chi Q, Ma T, Zhang Y, Cui Y, Zhang C, Lin J, Wang X, Lei Q (2017) Significantly enhanced energy storage density for poly (vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanofibers. J Mater Chem A 5(32):16757–16766. https://doi.org/10.1039/C7TA03897F

    Article  CAS  Google Scholar 

  44. Luo B, Wang X, Wang H, Cai Z, Li L (2017) P (VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Compos Sci Technol 151:94–103. https://doi.org/10.1016/j.compscitech.2017.08.013

    Article  CAS  Google Scholar 

  45. Shin EY, Cho HJ, Jung S, Yang C, Noh YY (2018) A High-k Fluorinated P (VDF-TrFE)-g-PMMA Gate Dielectric for High-Performance Flexible Field-Effect Transistors. Adv Funct Mater 28(4):1–9. https://doi.org/10.1002/adfm.201704780

    Article  CAS  Google Scholar 

  46. Habib A, Stelzer N, Haubner R (2009) Fabrication of BaTiO3-PMMA polymer nanocomposite thin/thick films and their dielectric properties. Solid State Phenom 151:108–112. https://doi.org/10.4028/www.scientific.net/SSP.151.108

    Article  CAS  Google Scholar 

  47. Liu S, Wang J, Hao H, Zhao L, Zhai J (2018) Discharged energy density and efficiency of nanocomposites based on poly (vinylidene fluoride) and core-shell structured BaTiO3@Al2O3 nanoparticles. Ceram Int 44(18):22850–22855. https://doi.org/10.1016/j.ceramint.2018.09.077

    Article  CAS  Google Scholar 

  48. Chi Q, Zhou Y, Yin C et al (2019) A blended binary composite of poly (vinylidene fluoride) and poly (methyl methacrylate) exhibiting excellent energy storage performances. J Mater Chem C 7(45):14148–14158. https://doi.org/10.1039/C9TC04695J

    Article  CAS  Google Scholar 

  49. Zhu L, Wang Q (2012) Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45(7):2937–2954. https://doi.org/10.1021/ma2024057

    Article  CAS  Google Scholar 

  50. Zhu L (2014) Exploring strategies for high dielectric constant and low loss polymer dielectrics. J Phys Chem Lett 5(21):3677–3687. https://doi.org/10.1021/jz501831q

    Article  CAS  Google Scholar 

  51. Dey S, Singh S, Singh SM, Rajput N, Kumar N (2016) The structural properties of BaTiO3:TiO2: PMMA composite films at room temperature. AIP Conference Proceedings. https://doi.org/10.1063/14946205

    Article  Google Scholar 

  52. Liu Y, Gao J, Yao R, Yao R, Zhang Y, Zhao T, Tang C, Zhong L (2020) Enhanced energy storage performance in a PVDF/PMMA/TiO2 blending nanodielectric material. Mater Chem Phys 250:123155. https://doi.org/10.1016/j.matchemphys.2020.123155

    Article  CAS  Google Scholar 

  53. Wu D, Luo M, Yang R, Hu X, Lu C (2023) Achieve High Dielectric and Energy-Storage Density Properties by Employing Cyanoethyl Cellulose as Fillers in PVDF-Based Polymer Composites. Materials 16(12):4201. https://doi.org/10.3390/ma16124201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51503121), the Open Project of the State Key Laboratory of Infrared Physics, Chinese Academy of Sciences (Grant No. IIMDKFJJ-20-11).

Author information

Authors and Affiliations

Authors

Contributions

ZW: Conceptualization (equal); Methodology (equal); Software (equal); Data Curation (equal); Writing-Original Draft (lead); Visualization (equal). XZ: Investigation (equal); Funding acquisition (lead); Resources (equal). XL: Writing—Review and Editing (equal); Project administration (equal). HW: Supervision (equal) ZL: Validation (equal); Methodology (equal). HH: Formal analysis (equal). JW: Investigation (equal).

Corresponding author

Correspondence to Xiuli Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, X., Li, X. et al. Flexible and low roughness cast films: promising candidates for capacitor applications. J Mater Sci 58, 16372–16384 (2023). https://doi.org/10.1007/s10853-023-09016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09016-y

Navigation