Skip to main content
Log in

Review on Li–Mg–N–H-based lightweight hydrogen storage composites and its applications: challenges, progress and prospects

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The increasing severity of global climate and energy problems has made renewable energy an inevitable choice for achieving a low-carbon society. Hydrogen is regarded as one of the most promising renewable energy due to its excellent characteristics, such as abundant and extensive resources, high calorific value, and non-pollution. How to achieve efficient hydrogen storage is one of the main hot spots of hydrogen energy research. For on-board hydrogen storage systems, which could be used for portable power sources and fuel cell vehicles, how to store hydrogen safely and effectively is one of the most urgent technological bottlenecks to overcome. The solid-state storage based on hydrogen storage materials has the advantages of low hydrogen storage pressure, high energy efficiency, safety and reliability, compared to conventional compressed hydrogen and cryogenic liquid hydrogen storage methods. It may be one of the most promising solutions to solve the above problems. Among the hydrogen storage materials, the lightweight composite hydrides Li–Mg–N–H system holds great promise for vehicular hydrogen storage applications owing to its moderate thermodynamic properties (∆Hdes ~ 44 kJ mol−1 H2 and ∆Sdes ~ 112 J mol−1 H2·K) and relatively high hydrogen capacity (~ 5.6 wt%). However, the Li–Mg–N–H material itself has poor cycling performance and a high energy barrier, resulting in a low dehydrogenation rate and high operating temperature. Apart from this, the multi-field coupling of mass and energy transfer also poses a challenge, hindering its on-board applications. In this paper, we present the modification methods and research status of the Li–Mg–N–H system's hydrogen storage materials. The effects of composition modification, nanocrystallization and catalyst addition on the thermal/kinetic properties of hydrogen storage materials in the Li–Mg–N–H system are expounded. The difficulties and directions for enhancing the hydrogen storage performance of Li–Mg–N–H system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337. https://doi.org/10.1038/35104599

    Article  CAS  Google Scholar 

  2. Wood G, Baker K (2020) The Palgrave handbook of managing fossil fuels and energy transitions. Springer International Publishing, Cham

    Book  Google Scholar 

  3. Ouyang L, Chen K, Jiang J et al (2020) Hydrogen storage in light-metal based systems: a review. J Alloys Compd 829:154597. https://doi.org/10.1016/j.jallcom.2020.154597

    Article  CAS  Google Scholar 

  4. He T, Pachfule P, Wu H et al (2016) Hydrogen carriers. Nat Rev Mater 1:1–17. https://doi.org/10.1038/natrevmats.2016.59

    Article  CAS  Google Scholar 

  5. Manickam K, Mistry P, Walker G et al (2019) Future perspectives of thermal energy storage with metal hydrides. Int J Hydrogen Energ 44:7738–7745. https://doi.org/10.1016/j.ijhydene.2018.12.011

    Article  CAS  Google Scholar 

  6. He T, Cao H, Chen P (2019) Complex hydrides for energy storage, conversion, and utilization. Adv Mater 31:1902757. https://doi.org/10.1002/adma.201902757

    Article  CAS  Google Scholar 

  7. Chu C, Wu K, Luo B et al (2023) Hydrogen storage by liquid organic hydrogen carriers: catalyst, renewable carrier, and technology-a review. Carbon Resources Convers 6:334–351. https://doi.org/10.1016/j.crcon.2023.03.007

    Article  CAS  Google Scholar 

  8. Pistidda C (2021) Solid-state hydrogen storage for a decarbonized society. Hydrogen 2:428–443. https://doi.org/10.3390/hydrogen2040024

    Article  CAS  Google Scholar 

  9. Yartys VA, Lototskyy MV, Akiba E et al (2019) Magnesium based materials for hydrogen based energy storage: past, present and future. Int J Hydrogen Energy 44:7809–7859. https://doi.org/10.1016/j.ijhydene.2018.12.212

    Article  CAS  Google Scholar 

  10. Milanese C et al (2019) Complex hydrides for energy storage. Int J Hydrogen Energy 44:7860–7874. https://doi.org/10.1016/j.ijhydene.2018.11.208

    Article  CAS  Google Scholar 

  11. Zhang B, Wu Y (2017) Recent advances in improving performances of the lightweight complex hydrides Li–Mg–N–H system. Prog Nat Sci Mater Int 27:21–33. https://doi.org/10.1016/j.pnsc.2017.01.005

    Article  CAS  Google Scholar 

  12. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles |Department of Energy. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles. Accessed 27 Sep 2022

  13. Garroni S, Santoru A, Cao H et al (2018) Recent progress and new perspectives on metal amide and imide systems for solid-state hydrogen storage. Energies 11:1027. https://doi.org/10.3390/en11051027

    Article  CAS  Google Scholar 

  14. Salman MS, Lai Q, Luo X et al (2022) The power of multifunctional metal hydrides: a key enabler beyond hydrogen storage. J Alloys Compd 920:165936. https://doi.org/10.1016/j.jallcom.2022.165936

    Article  CAS  Google Scholar 

  15. Chen P, Xiong Z, Luo J et al (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420:302–304. https://doi.org/10.1038/nature01210

    Article  CAS  Google Scholar 

  16. Wang J, Li H-W, Chen P (2013) Amides and borohydrides for high-capacity solid-state hydrogen storage-materials design and kinetic improvements. MRS Bull 38:480–487. https://doi.org/10.1557/mrs.2013.131

    Article  CAS  Google Scholar 

  17. Zhang Z, Cao H, Zhang W et al (2020) Thermochemical transformation and reversible performance of Mg(NH2)2-NaMgH3 system. Int J Hydrogen Energy 45:23069–23075. https://doi.org/10.1016/j.ijhydene.2020.06.094

    Article  CAS  Google Scholar 

  18. Luo W (2004) (LiNH2-MgH2): a viable hydrogen storage system. J Alloys Compd 381:284–287. https://doi.org/10.1016/j.jallcom.2004.03.119

    Article  CAS  Google Scholar 

  19. Lin H-J, Li H-W, Paik B et al (2016) Improvement of hydrogen storage property of three-component Mg(NH2)2-LiNH2-LiH composites by additives. Dalton Trans 45:15374–15381. https://doi.org/10.1039/C6DT02845D

    Article  CAS  Google Scholar 

  20. Wang H, Wu G, Cao H et al (2017) Near ambient condition hydrogen storage in a synergized tricomponent hydride system. Adv Energy Mater 7:1602456. https://doi.org/10.1002/aenm.201602456

    Article  CAS  Google Scholar 

  21. Chen P, Xiong Z, Luo J et al (2003) Interaction between lithium amide and lithium hydride. J Phys Chem B 107:10967–10970. https://doi.org/10.1021/jp034149j

    Article  CAS  Google Scholar 

  22. Chen P, Xiong Z, Yang L et al (2006) Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. J Phys Chem B 110:14221–14225. https://doi.org/10.1021/jp061496v

    Article  CAS  Google Scholar 

  23. Xiong Z, Wu G, Hu J, Chen P (2004) Ternary imides for hydrogen storage. Adv Mater 16:1522–1525. https://doi.org/10.1002/adma.200400571

    Article  CAS  Google Scholar 

  24. Grochala W, Edwards PP (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev 104:1283–1316. https://doi.org/10.1021/cr030691s

    Article  CAS  Google Scholar 

  25. Lu J, Fang ZZ, Sohn HY (2006) A dehydrogenation mechanism of metal hydrides based on interactions between Hδ+ and H-. Inorg Chem 45:8749–8754. https://doi.org/10.1021/ic060836o

    Article  CAS  Google Scholar 

  26. Xiong Z, Hu J, Wu G et al (2005) Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system. J Alloys Compd 398:235–239. https://doi.org/10.1016/j.jallcom.2005.02.010

    Article  CAS  Google Scholar 

  27. Hu J, Liu Y, Wu G et al (2007) Structural and compositional changes during hydrogenation/dehydrogenation of the Li–Mg–N–H system. J Phys Chem C 111:18439–18443. https://doi.org/10.1021/jp075757s

    Article  CAS  Google Scholar 

  28. David WIF, Jones MO, Gregory DH et al (2007) A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J Am Chem Soc 129:1594–1601. https://doi.org/10.1021/ja066016s

    Article  CAS  Google Scholar 

  29. Ichikawa T, Hanada N, Isobe S et al (2004) Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. J Phys Chem B 108:7887–7892. https://doi.org/10.1021/jp049968y

    Article  CAS  Google Scholar 

  30. Hu JZ, Kwak JH, Yang Z et al (2008) Probing the reaction pathway of dehydrogenation of the LiNH2+LiH mixture using in situ 1H NMR spectroscopy. J Power Sources 181:116–119. https://doi.org/10.1016/j.jpowsour.2008.03.034

    Article  CAS  Google Scholar 

  31. Song Y, Guo ZX (2006) Electronic structure, stability and bonding of the Li-N-H hydrogen storage system. Phys Rev B 74:195120. https://doi.org/10.1103/PhysRevB.74.195120

    Article  CAS  Google Scholar 

  32. Isobe S, Ichikawa T, Leng H et al (2008) Hydrogen desorption processes in Li–Mg–N–H systems. J Phys Chem Solids 69:2234–2236. https://doi.org/10.1016/j.jpcs.2008.04.002

    Article  CAS  Google Scholar 

  33. Hu YH, Ruckenstein E (2003) Ultrafast reaction between LiH and NH3 during H2 storage in Li3N. J Phys Chem A 107:9737–9739. https://doi.org/10.1021/jp036257b

    Article  CAS  Google Scholar 

  34. Cao H, Wang J, Chua Y et al (2014) NH3 mediated or ion migration reaction: the case study on halide-amide system. J Phys Chem C 118:2344–2349. https://doi.org/10.1021/jp411551v

    Article  CAS  Google Scholar 

  35. Xiong Z, Wu G, Hu J et al (2006) Investigations on hydrogen storage over Li–Mg–N–H complex—the effect of compositional changes. J Alloys Compd 417:190–194. https://doi.org/10.1016/j.jallcom.2005.07.072

    Article  CAS  Google Scholar 

  36. Liu Y, Liang C, Wei Z et al (2010) Hydrogen storage reaction over a ternary imide Li2Mg2N3H3. Phys Chem Chem Phys 12:3108–3111. https://doi.org/10.1039/C000271B

    Article  CAS  Google Scholar 

  37. Matysina ZA, Zaginaichenko SYu, Schur DV et al (2018) The mixed lithium-magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material. Int J Hydrogen Energy 43:16092–16106. https://doi.org/10.1016/j.ijhydene.2018.06.168

    Article  CAS  Google Scholar 

  38. Amica G, Enzo S, Larochette PA, Gennari FC (2018) Improvements in the hydrogen storage properties of the Mg(NH2)2-LiH composite by KOH addition. Phys Chem Chem Phys 20:15358–15367. https://doi.org/10.1039/C8CP02347F

    Article  CAS  Google Scholar 

  39. Luo W, Stewart K (2007) Characterization of NH3 formation in desorption of Li–Mg–N–H storage system. J Alloys Compd 440:357–361. https://doi.org/10.1016/j.jallcom.2006.09.057

    Article  CAS  Google Scholar 

  40. Leng HY, Ichikawa T, Isobe S et al (2005) Desorption behaviours from metal-N-H systems synthesized by ball milling. J Alloys Compd 404–406:443–447. https://doi.org/10.1016/j.jallcom.2004.09.082

    Article  CAS  Google Scholar 

  41. Nakamori Y, Kitahara G, Orimo S (2004) Synthesis and dehydriding studies of Mg-N-H systems. J Power Sources 138:309–312. https://doi.org/10.1016/j.jpowsour.2004.06.026

    Article  CAS  Google Scholar 

  42. Orimo S, Nakamori Y, Eliseo JR et al (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132. https://doi.org/10.1021/cr0501846

    Article  CAS  Google Scholar 

  43. Aoki M, Noritake T, Nakamori Y et al (2007) Dehydriding and rehydriding properties of Mg(NH2)2-LiH systems. J Alloys Compd 446–447:328–331. https://doi.org/10.1016/j.jallcom.2006.11.141

    Article  CAS  Google Scholar 

  44. Hu J, Fichtner M (2009) Formation and stability of ternary imides in the Li–Mg–N–H hydrogen storage system. Chem Mater 21:3485–3490. https://doi.org/10.1021/cm901362v

    Article  CAS  Google Scholar 

  45. Cao H, Chua Y, Zhang Y et al (2013) Releasing 9.6 wt% of H2 from Mg(NH2)2–3LiH-NH3BH3 through mechanochemical reaction. Int J Hydrogen Energy 38:10446–10452. https://doi.org/10.1016/j.ijhydene.2013.06.036

    Article  CAS  Google Scholar 

  46. Liang C, Liu Y, Fu H et al (2011) Li–Mg–N–H -based combination systems for hydrogen storage. J Alloys Compd 509:7844–7853. https://doi.org/10.1016/j.jallcom.2011.04.123

    Article  CAS  Google Scholar 

  47. Alapati SV, Johnson JK, Sholl DS (2006) Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J Phys Chem B 110:8769–8776. https://doi.org/10.1021/jp060482m

    Article  CAS  Google Scholar 

  48. Lu J, Choi YJ, Fang ZZ, Sohn HY (2010) Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2-MgH2 (1:1) mixture. J Power Sources 195:1992–1997. https://doi.org/10.1016/j.jpowsour.2009.10.032

    Article  CAS  Google Scholar 

  49. Osborn W, Markmaitree T, Shaw LL (2007) Evaluation of the hydrogen storage behavior of a LiNH2+MgH2 system with 1:1 ratio. J Power Sources 172:376–378. https://doi.org/10.1016/j.jpowsour.2007.07.037

    Article  CAS  Google Scholar 

  50. Liang C, Liu Y, Luo K et al (2010) Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH2/MgH2 system. Chem-A Eur J 16:693–702. https://doi.org/10.1002/chem.200901967

    Article  CAS  Google Scholar 

  51. Luo W, Rönnebro E (2005) Towards a viable hydrogen storage system for transportation application. J Alloys Compd 404–406:392–395. https://doi.org/10.1016/j.jallcom.2005.01.131

    Article  CAS  Google Scholar 

  52. Li B, Liu Y, Zhang Y et al (2012) Reaction pathways for hydrogen uptake of the Li-Mg-N-based hydrogen storage system. J Phys Chem C 116:13551–13558. https://doi.org/10.1021/jp3027308

    Article  CAS  Google Scholar 

  53. Liu Y, Li B, Tu F et al (2011) Correlation between composition and hydrogen storage behaviors of the Li2NH-MgNH combination system. Dalton Trans 40:8179–8186. https://doi.org/10.1039/C1DT10108K

    Article  CAS  Google Scholar 

  54. Zhang B, Wu Y (2014) Hydrogen absorption–desorption mechanisms for the ball-milled Li3N-MgH2 (1:1) mixture. Int J Hydrogen Energy 39:13603–13608. https://doi.org/10.1016/j.ijhydene.2014.02.153

    Article  CAS  Google Scholar 

  55. Gizer G, Puszkiel J, Cao H et al (2019) Tuning the reaction mechanism and hydrogenation/dehydrogenation properties of 6Mg(NH2)2–9LiH system by adding LiBH4. Int J Hydrogen Energy 44:11920–11929. https://doi.org/10.1016/j.ijhydene.2019.03.133

    Article  CAS  Google Scholar 

  56. Wu C, Cheng H-M (2010) Effects of carbon on hydrogen storage performances of hydrides. J Mater Chem 20:5390–5400. https://doi.org/10.1039/B926880D

    Article  CAS  Google Scholar 

  57. Shahi RR, Raghubanshi H, Shaz MA, Srivastava ON (2012) Studies on the de/re-hydrogenation characteristic of Mg(NH2)2/LiH mixture admixed with carbon nanofibres. Int J Hydrogen Energy 37:3705–3711. https://doi.org/10.1016/j.ijhydene.2011.04.10

    Article  CAS  Google Scholar 

  58. Shukla V, Yadav TP, Abu Shaz M (2022) Achievement of excellent hydrogen sorption through swift hydrogen transport in 1:2 Mg(NH2)2-LiH catalyzed by Li4BH4(NH2)3 and carbon nanostructures. Int J Hydrogen Energy 47:23679–23693. https://doi.org/10.1016/j.ijhydene.2022.05.138

    Article  CAS  Google Scholar 

  59. Shahi RR, Yadav TP, Shaz MA, Srivastva ON (2010) Studies on dehydrogenation characteristic of Mg(NH2)2/LiH mixture admixed with vanadium and vanadium based catalysts (V, V2O5 and VCl3). Int J Hydrogen Energy 35:238–246. https://doi.org/10.1016/j.ijhydene.2009.10.029

    Article  CAS  Google Scholar 

  60. Demirocak DE, Srinivasan SS, Ram MK et al (2013) Reversible hydrogen storage in the Li–Mg–N–H system-The effects of Ru doped single walled carbon nanotubes on NH3 emission and kinetics. Int J Hydrogen Energy 38:10039–10049. https://doi.org/10.1016/j.ijhydene.2013.05.176

    Article  CAS  Google Scholar 

  61. Ma L-P, Dai H-B, Liang Y et al (2008) Catalytically enhanced hydrogen storage properties of Mg(NH2)2+2LiH material by graphite-supported Ru nanoparticles. J Phys Chem C 112:18280–18285. https://doi.org/10.1021/jp806680n

    Article  CAS  Google Scholar 

  62. Zhao W, Wu Y, Li P et al (2018) Enhanced hydrogen storage properties of 1.1MgH2-2LiNH2-0.1LiBH4 system with LaNi5-based alloy hydrides addition. RSC Adv 8:40647–40654. https://doi.org/10.1039/C8RA07279E

    Article  CAS  Google Scholar 

  63. Ma L-P, Fang Z-Z, Dai H-B et al (2009) Effect of Li3N additive on the hydrogen storage properties of Li–Mg–N–H system. J Mater Res 24:1936–1942. https://doi.org/10.1557/jmr.2009.0248

    Article  CAS  Google Scholar 

  64. Sudik A, Yang J, Halliday D, Wolverton C (2007) Kinetic improvement in the Mg(NH2)2-LiH storage system by product seeding. J Phys Chem C 111:6568–6573. https://doi.org/10.1021/jp0683465

    Article  CAS  Google Scholar 

  65. Li B, Liu Y, Li C et al (2014) In situ formation of lithium fast-ion conductors and improved hydrogen desorption properties of the LiNH2-MgH2 system with the addition of lithium halides. J Mater Chem A 2:3155–3162. https://doi.org/10.1039/C3TA14331G

    Article  CAS  Google Scholar 

  66. Gamba NS, Larochette PA, Gennari FC (2015) Effect of LiCl presence on the hydrogen storage performance of the Mg(NH2)2–2LiH composite. RSC Adv 5:68542–68550. https://doi.org/10.1039/C5RA12241D

    Article  CAS  Google Scholar 

  67. Liu Y, Hu J, Xiong Z et al (2007) Improvement of the hydrogen-storage performances of Li–Mg–N–H system. J Mater Res 22:1339–1345. https://doi.org/10.1557/jmr.2007.0165

    Article  CAS  Google Scholar 

  68. Liang C, Liu Y, Wei Z et al (2011) Enhanced dehydrogenation/hydrogenation kinetics of the Mg(NH2)2–2LiH system with NaOH additive. Int J Hydrogen Energy 36:2137–2144. https://doi.org/10.1016/j.ijhydene.2010.11.068

    Article  CAS  Google Scholar 

  69. Wang J, Liu T, Wu G et al (2009) Potassium-modified Mg(NH2)2/2LiH system for hydrogen storage. Angew Chem Int Ed 48:5828–5832. https://doi.org/10.1002/anie.200805264

    Article  CAS  Google Scholar 

  70. Li C, Liu Y, Ma R et al (2014) Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb cocatalyzed Mg(NH2)2–2LiH system. ACS Appl Mater Interfaces 6:17024–17033. https://doi.org/10.1021/am504592x

    Article  CAS  Google Scholar 

  71. Durojaiye T, Hayes J, Goudy A (2015) Potassium, rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system. Int J Hydrogen Energy 40:2266–2273. https://doi.org/10.1016/j.ijhydene.2014.12.056

    Article  CAS  Google Scholar 

  72. Santoru A, Pistidda C, Brighi M et al (2018) Insights into the Rb-Mg-N-H system: an ordered mixed amide/imide phase and a disordered amide/hydride solid solution. Inorg Chem 57:3197–3205. https://doi.org/10.1021/acs.inorgchem.7b03232

    Article  CAS  Google Scholar 

  73. Cui J, Zhang W, Cao H et al (2020) Mild-condition synthesis of A2ZnH4 (A=K, Rb, Cs) and their effects on the hydrogen storage properties of 2LiH-Mg(NH2)2. J Energy Chem 50:358–364. https://doi.org/10.1016/j.jechem.2020.03.067

    Article  Google Scholar 

  74. Wang J, Chen P, Pan H et al (2013) Solid-solid heterogeneous catalysis: the role of potassium in promoting the dehydrogenation of the Mg(NH2)2/2LiH composite. Chem Sus Chem 6:2181–2189. https://doi.org/10.1002/cssc.201200885

    Article  CAS  Google Scholar 

  75. Chen Y, Sun X, Zhang W et al (2020) Hydrogen pressure-dependent dehydrogenation performance of the Mg(NH2)2–2LiH-0.07KOH system. ACS Appl Mater Interfaces 12:15255–15261. https://doi.org/10.1021/acsami.0c00956

    Article  CAS  Google Scholar 

  76. Li C, Liu Y, Pang Y et al (2014) Compositional effects on the hydrogen storage properties of Mg(NH2)2–2LiH-xKH and the activity of KH during dehydrogenation reactions. Dalton Trans 43:2369–2377. https://doi.org/10.1039/C3DT52296B

    Article  CAS  Google Scholar 

  77. Liu Y, Li C, Li B et al (2013) Metathesis reaction-induced significant improvement in hydrogen storage properties of the KF-added Mg(NH2)2–2LiH system. J Phys Chem C 117:866–875. https://doi.org/10.1021/jp3107414

    Article  CAS  Google Scholar 

  78. Liang C, Gao M, Pan H et al (2014) Effect of gas back pressure on hydrogen storage properties and crystal structures of Li2Mg(NH)2. Int J Hydrogen Energy 39:17754–17764. https://doi.org/10.1016/j.ijhydene.2014.09.013

    Article  CAS  Google Scholar 

  79. Gizer G, Karimi F, Pistidda C et al (2022) Effect of the particle size evolution on the hydrogen storage performance of KH doped Mg(NH2)2+2LiH. J Mater Sci 57:10028–10038. https://doi.org/10.1007/s10853-022-06985-4

    Article  CAS  Google Scholar 

  80. Li C, Liu Y, Yang Y et al (2014) High-temperature failure behaviour and mechanism of K-based additives in Li–Mg–N–H hydrogen storage systems. J Mater Chem A 2:7345–7353. https://doi.org/10.1039/C4TA00025K

    Article  CAS  Google Scholar 

  81. Gizer G, Karimi F, Pistidda C et al (2022) Effect of the particle size evolution on the hydrogen storage performance of KH doped Mg(NH2)2 + 2LiH. J Mater Sci 57:10028–10038. https://doi.org/10.1007/s10853-022-06985-4

    Article  CAS  Google Scholar 

  82. Gizer G, Puszkiel J, Riglos MVC et al (2020) Improved kinetic behaviour of Mg(NH2)2–2LiH doped with nanostructured K-modified-LixTiyOz for hydrogen storage. Sci Rep 10:8. https://doi.org/10.1038/s41598-019-55770-y

    Article  CAS  Google Scholar 

  83. Yang J, Sudik A, Siegel DJ et al (2007) Hydrogen storage properties of 2LiNH2+LiBH4+MgH2. J Alloys Compd 446–447:345–349. https://doi.org/10.1016/j.jallcom.2007.03.145

    Article  CAS  Google Scholar 

  84. Hu J, Liu Y, Wu G et al (2008) Improvement of hydrogen storage properties of the Li–Mg–N–H system by addition of LiBH4. Chem Mater 20:4398–4402. https://doi.org/10.1021/cm800584x

    Article  CAS  Google Scholar 

  85. Hu J, Weidner E, Hoelzel M, Fichtner M (2010) Functions of LiBH4 in the hydrogen sorption reactions of the 2LiH-Mg(NH2)2 system. Dalton Trans 39:9100–9107. https://doi.org/10.1039/C0DT00468E

    Article  CAS  Google Scholar 

  86. Miao N, Zhou X, Lin X et al (2019) Effect of LiCe(BH4)3Cl with a high Li ion conductivity on the hydrogen storage properties of LiMgNH system. Int J Hydrogen Energy 44:29150–29158. https://doi.org/10.1016/j.ijhydene.2019.03.094

    Article  CAS  Google Scholar 

  87. Wang H, Cao H, Wu G et al (2015) The improved hydrogen storage performances of the multi-component composite: 2Mg(NH2)2–3LiH-LiBH4. Energies 8:6898–6909. https://doi.org/10.3390/en8076898

    Article  CAS  Google Scholar 

  88. Srinivasan SS, Niemann MU, Hattrick-Simpers JR et al (2010) Effects of nano additives on hydrogen storage behavior of the multinary complex hydride LiBH4/LiNH2/MgH2. Int J Hydrogen Energy 35:9646–9652. https://doi.org/10.1016/j.ijhydene.2010.06.061

    Article  CAS  Google Scholar 

  89. Hu J, Pohl A, Wang S et al (2012) Additive effects of LiBH4 and ZrCoH3 on the hydrogen sorption of the Li–Mg–N–H hydrogen storage system. J Phys Chem C 116:20246–20253. https://doi.org/10.1021/jp307775d

    Article  CAS  Google Scholar 

  90. Liang C, Liu Y, Jiang Y et al (2010) Local defects enhanced dehydrogenation kinetics of the NaBH4-added Li–Mg–N–H system. Phys Chem Chem Phys 13:314–321. https://doi.org/10.1039/C0CP00340A

    Article  Google Scholar 

  91. Ji X, Liu M, Liu Y, Hu J (2023) Effects of metal borohydrides on the dehydrogenation kinetics of the Li–Mg–N–H hydrogen-storage system. J Phys Chem C 127:5255–5261. https://doi.org/10.1021/acs.jpcc.3c00630

    Article  CAS  Google Scholar 

  92. Li B, Liu Y, Gu J et al (2013) Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li–Mg–N–H system. Chem Asian J 8:374–384. https://doi.org/10.1002/asia.201200938

    Article  CAS  Google Scholar 

  93. Qiu S, Ma X, Wang E et al (2017) Enhanced hydrogen storage properties of 2LiNH2/MgH2 through the addition of Mg(BH4)2. J Alloys Compd 704:44–50. https://doi.org/10.1016/j.jallcom.2017.02.045

    Article  CAS  Google Scholar 

  94. Zhang B, Yuan J, Wu Y (2019) Catalytic effects of Mg(BH4)2 on the desorption properties of 2LiNH2-MgH2 mixture. Int J Hydrogen Energy 44:19294–19301. https://doi.org/10.1016/j.ijhydene.2018.10.095

    Article  CAS  Google Scholar 

  95. Wang J, Lei G, Pistidda C et al (2021) Hydrogen storage properties and reaction mechanisms of K2Mn(NH2)4–8LiH system. Int J Hydrogen Energy 46:40196–40202. https://doi.org/10.1016/j.ijhydene.2021.09.216

    Article  CAS  Google Scholar 

  96. Che H, Wu Y, Wang X et al (2023) Improved hydrogen storage properties of Li–Mg–N–H system by lithium vanadium oxides. J Alloys Compd 931:167603. https://doi.org/10.1016/j.jallcom.2022.167603

    Article  CAS  Google Scholar 

  97. Senes N, Fernández Albanesi L, Garroni S et al (2018) Kinetics and hydrogen storage performance of Li–Mg–N–H systems doped with Al and AlCl3. J Alloys Compd 765:635–643. https://doi.org/10.1016/j.jallcom.2018.06.262

    Article  CAS  Google Scholar 

  98. Cao H, Zhang Y, Wang J et al (2013) Effects of Al-based additives on the hydrogen storage performance of the Mg(NH2)2–2LiH system. Dalton Trans 42:5524–5531. https://doi.org/10.1039/C3DT32165G105

    Article  CAS  Google Scholar 

  99. Lin W, Xiao X, Wang X et al (2020) Extreme high reversible capacity with over 8.0 wt% and excellent hydrogen storage properties of MgH2 combined with LiBH4 and Li3AlH6. J Energy Chem 50:296–306. https://doi.org/10.1016/j.jechem.2020.03.076

    Article  Google Scholar 

  100. Feng W, Xue ping Z, Xue qin M et al (2022) Catalytic effects of FGO-Ni addition on the dehydrogenation properties of LiAlH4. Int J Hydrogen Energy 47:26458–26467. https://doi.org/10.1016/j.ijhydene.2022.03.028

    Article  CAS  Google Scholar 

  101. Che Mazlan NS, Asyraf Abdul Halim Yap MF, Ismail M et al (2023) Reinforce the dehydrogenation process of LiAlH4 by accumulating porous activated carbon. Int J Hydrogen Energy 48:16381–16391. https://doi.org/10.1016/j.ijhydene.2023.01.080

    Article  CAS  Google Scholar 

  102. Sazelee NA, Yahya MS, Ali NA et al (2020) Enhancement of dehydrogenation properties in LiAlH4 catalysed by BaFe12O19. J Alloys Compd 835:155183. https://doi.org/10.1016/j.jallcom.2020.155183

    Article  CAS  Google Scholar 

  103. Li L, Huang Y, An C, Wang Y (2019) Lightweight hydrides nanocomposites for hydrogen storage: challenges, progress and prospects. Sci China Mater 62:1597–1625. https://doi.org/10.1007/s40843-019-9556-1

    Article  Google Scholar 

  104. Durojaiye T, Hayes J, Goudy A (2013) Rubidium hydride: an exceptional dehydrogenation catalyst for the lithium amide/magnesium hydride system. J Phys Chem C 117:6554–6560. https://doi.org/10.1021/jp400961k111

    Article  CAS  Google Scholar 

  105. Li Z-N, Qiu H-C, Guo X-M et al (2017) Hydrogen storage properties of Li-Mg-N-B-H/ZrCoH3 composite with different ball-milling atmospheres. Rare Met 42:1036–1042. https://doi.org/10.1007/s12598-016-0838-9

    Article  CAS  Google Scholar 

  106. Pan H, Shi S, Liu Y et al (2013) Improved hydrogen storage kinetics of the Li–Mg–N–H system by addition of Mg(BH4)2. Dalton Trans 42:3802–3811. https://doi.org/10.1039/c2dt32266h

    Article  CAS  Google Scholar 

  107. Chen Y, Wang P, Liu C, Cheng H (2007) Improved hydrogen storage performance of Li–Mg–N–H materials by optimizing composition and adding single-walled carbon nanotubes. Int J Hydrogen Energy 32:1262–1268. https://doi.org/10.1016/j.ijhydene.2006.07.019

    Article  CAS  Google Scholar 

  108. Pasquini L (2020) Design of nanomaterials for hydrogen storage. Energies 13:3503. https://doi.org/10.3390/en13133503

    Article  CAS  Google Scholar 

  109. Wagemans RWP, van Lenthe JH, de Jongh PE et al (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127:16675–16680. https://doi.org/10.1021/ja054569h

    Article  CAS  Google Scholar 

  110. Xie L, Liu Y, Li G, Li X (2009) Improving hydrogen sorption kinetics of the Mg(NH2)2-LiH system by the tuning particle size of the amide. J Phys Chem C 113:14523–14527. https://doi.org/10.1021/jp904346x

    Article  CAS  Google Scholar 

  111. Shahi RR, Yadav TP, Shaz MA, Srivastava ON (2008) Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture. Int J Hydrogen Energy 33:6188–6194. https://doi.org/10.1016/j.ijhydene.2008.07.029

    Article  CAS  Google Scholar 

  112. Wang J, Hu J, Liu Y et al (2009) Effects of triphenyl phosphate on the hydrogen storage performance of the Mg(NH2)2–2LiH system. J Mater Chem 19:2141–2146. https://doi.org/10.1039/B812653D

    Article  CAS  Google Scholar 

  113. Liu Y, Zhong K, Luo K et al (2009) Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li–Mg–N–H system. J Am Chem Soc 131:1862–1870. https://doi.org/10.1021/ja806565t

    Article  CAS  Google Scholar 

  114. Xia G, Tan Y, Chen X et al (2015) Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv Mater 27:5981–5988. https://doi.org/10.1002/adma.201502005

    Article  CAS  Google Scholar 

  115. Jeon K-J, Moon HR, Ruminski AM et al (2011) Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater 10:286–290. https://doi.org/10.1038/nmat2978

    Article  CAS  Google Scholar 

  116. Xia G, Chen X, Zhou C et al (2015) Nano-confined multi-synthesis of a Li–Mg–N–H nanocomposite towards low-temperature hydrogen storage with stable reversibility. J Mater Chem A 3:12646–12652. https://doi.org/10.1039/C5TA00259A

    Article  CAS  Google Scholar 

  117. Xia G, Tan Y, Li D et al (2014) Hierarchical porous Li2Mg(NH)2@C nanowires with long cycle life towards stable hydrogen storage. Sci Rep 4:6599. https://doi.org/10.1038/srep06599

    Article  CAS  Google Scholar 

  118. Jia Y, Sun C, Shen S et al (2015) Combination of nanosizing and interfacial effect: future perspective for designing Mg-based nanomaterials for hydrogen storage. Renew Sustain Energy Rev 44:289–303. https://doi.org/10.1016/j.rser.2014.12.032

    Article  CAS  Google Scholar 

  119. Valizadeh M, Aghajani Delavar M, Farhadi M (2016) Numerical simulation of heat and mass transfer during hydrogen desorption in metal hydride storage tank by Lattice Boltzmann method. Int J Hydrogen Energy 41:413–424. https://doi.org/10.1016/j.ijhydene.2015.11.075

    Article  CAS  Google Scholar 

  120. Bhouri M, Bürger I, Linder M (2014) Optimization of hydrogen charging process parameters for an advanced complex hydride reactor concept. Int J Hydrogen Energy 39:17726–17739. https://doi.org/10.1016/j.ijhydene.2014.08.100

    Article  CAS  Google Scholar 

  121. Bhouri M, Bürger I, Linder M (2015) Numerical investigation of hydrogen charging performance for a combination reactor with embedded metal hydride and coolant tubes. Int J Hydrogen Energy 40:6626–6638. https://doi.org/10.1016/j.ijhydene.2015.03.060

    Article  CAS  Google Scholar 

  122. Bürger I, Hu JJ, Vitillo JG et al (2014) Material properties and empirical rate equations for hydrogen sorption reactions in 2LiNH2-1.1MgH2-0.1LiBH4-3wt%ZrCoH3. Int J Hydrogen Energy 39:8283–8292. https://doi.org/10.1016/j.ijhydene.2014.02.120

    Article  CAS  Google Scholar 

  123. Bürger I, Komogowski L, Linder M (2014) Advanced reactor concept for complex hydrides: hydrogen absorption from room temperature. Int J Hydrogen Energy 39:7030–7041. https://doi.org/10.1016/j.ijhydene.2014.02.070

    Article  CAS  Google Scholar 

  124. Baricco M, Bang M, Fichtner M et al (2017) SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells. J Power Sources 342:853–860. https://doi.org/10.1016/j.jpowsour.2016.12.107

    Article  CAS  Google Scholar 

  125. Yan M, Sun F, Liu X, Ye J (2014) Effects of compaction pressure and graphite content on hydrogen storage properties of Mg(NH2)2–2LiH hydride. Int J Hydrogen Energy 39:19656–19661. https://doi.org/10.1016/j.ijhydene.2014.09.156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 52271231).

Author information

Authors and Affiliations

Authors

Contributions

HL contributed to writing—original draft and data curation. ZL contributed to supervision, writing—review & editing, and funding acquisition. ML contributed to writing—review & editing. HY contributed to conceptualization. YW contributed to project administration. XG contributed to writing—review & editing. LH contributed to conceptualization.

Corresponding author

Correspondence to Zhinian Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Z., Luo, M. et al. Review on Li–Mg–N–H-based lightweight hydrogen storage composites and its applications: challenges, progress and prospects. J Mater Sci 58, 16269–16296 (2023). https://doi.org/10.1007/s10853-023-08993-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08993-4

Navigation