Skip to main content
Log in

Synergistic passivation of defects for inorganic perovskite solar cells with reduced open-circuit voltage deficiency

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Full-inorganic CsPb(IxBr1-x)3 (0 < x < 1) optoelectronic devices have given rise to widespread interest of researchers owing to their excellent photovoltaic properties and promising thermal stability. However, defects at the interface between the electron transport layer (ETL) and the perovskite layer cause the open-circuit voltage (VOC) deficiency for inorganic perovskite solar cells (PSC). In this work, Baclofen (BCF), with carboxy group, amidogen group, and Cl in its molecule, is used as an interlayer between SnO2 and CsPb(IxBr1-x)3 inorganic perovskite. It is proved that the BCF can not only be beneficial for the growth of perovskite film but also act as a passivation layer for the SnO2/perovskite (PSK) interface, which significantly improves the open-circuit voltage of PSCs. Finally, a high VOC of 1.31 V and a power conversion efficiency (PCE) of 15.36% are realized for our BCF-treated PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data and code availability

All data are available from the corresponding authors, please contact yuxuegong@zju.edu.cn.

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050. https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  2. The National Renewable Energy Laboratory (2022) Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 23 October 2022

  3. Werner J, Niesen B, Ballif C (2018) Perovskite/silicon tandem solar cells: marriage of convenience or true love story? - an overview. Adv Mater Interfaces 5:1700731. https://doi.org/10.1002/admi.201700731

    Article  Google Scholar 

  4. Zhang ZH, Li ZC, Meng LY, Lien SY, Gao P (2020) Perovskite-based tandem solar cells: get the most out of the sun. Adv Funct Mater 30:2001904. https://doi.org/10.1002/adfm.202001904

    Article  CAS  Google Scholar 

  5. Yao YX, Hang PJ, Li BA et al (2022) Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency. Small 18:2203319. https://doi.org/10.1002/smll.202203319

    Article  CAS  Google Scholar 

  6. Bellini E (2022) CSEM, EPFL achieve 31.25% efficiency for tandem perovskite-silicon solar cell. https://www.pv-magazine.com/2022/07/07/csem-epfl-achieve-31-25-efficiency-for-tandem-perovskite-silicon-solar-cell/. Accessed 31 October 2022

  7. Boyd CC, Cheacharoen R, Leijtens T, McGehee MD (2019) Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev 119:3418–3451. https://doi.org/10.1021/acs.chemrev.8b00336

    Article  CAS  Google Scholar 

  8. Han SQ, Zhang HM, Wang RF, He QC (2021) Research progress of absorber film of inorganic perovskite solar cells: fabrication techniques and additive engineering in defect passivation. Mat Sci Semicon Proc 127:105666. https://doi.org/10.1016/j.mssp.2021.105666

    Article  CAS  Google Scholar 

  9. Xiang SS, Fu ZH, Li WP et al (2018) Highly air-stable carbon-based alpha-CsPbl(3) perovskite solar cells with a broadened optical spectrum. Acs Energy Lett 3:1824. https://doi.org/10.1021/acsenergylett.8b00820

    Article  CAS  Google Scholar 

  10. Nam JK, Chun DH, Rhee RJK, Lee JH, Park JH (2018) Methodologies toward efficient and stable cesium lead halide perovskite-based solar cells. Adv Sci 5:1800509. https://doi.org/10.1002/advs.201800509

    Article  CAS  Google Scholar 

  11. Mariotti S, Hutter OS, Phillips LJ, Yates PJ, Kundu B, Durose K (2018) Stability and performance of CsPbI2Br thin films and solar cell devices. Acs Appl Mater Inter 10:3750–3760. https://doi.org/10.1021/acsami.7b14039

    Article  CAS  Google Scholar 

  12. Ye QF, Zhao Y, Mu SQ et al (2019) Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv Mater 31:1905143. https://doi.org/10.1002/adma.201905143

    Article  CAS  Google Scholar 

  13. Choi K, Choi H, Min J et al (2020) A short review on interface engineering of perovskite solar cells: a self-assembled monolayer and its roles. Sol Rrl 4:1900251. https://doi.org/10.1002/solr.201900251

    Article  Google Scholar 

  14. Xu J, Cui J, Yang SM et al (2022) Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett 14:7. https://doi.org/10.1007/s40820-021-00763-8

    Article  CAS  Google Scholar 

  15. Liang ZR, Bi ZN, Gao K et al (2019) Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air. Appl Surf Sci 463:939–946. https://doi.org/10.1016/j.apsusc.2018.08.077

    Article  CAS  Google Scholar 

  16. Yu WJ, Sun XR, Xiao M et al (2022) Recent advances on interface engineering of perovskite solar cells. Nano Res 15:85–103. https://doi.org/10.1007/s12274-021-3488-7

    Article  CAS  Google Scholar 

  17. Yang D, Yang RX, Wang K et al (2018) High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun 9:3239. https://doi.org/10.1038/s41467-018-05760-x

    Article  CAS  Google Scholar 

  18. Cheng N, Cao Y, Li WW et al (2022) SnO2 electron transport layer modified with gentian violet for perovskite solar cells with enhanced performance. Organic Electr 108:106600. https://doi.org/10.1016/j.orgel.2022.106600

    Article  CAS  Google Scholar 

  19. Wang JX, Liu YB, Xiao XD et al (2021) An efficient post-treatment strategy with acetylacetone for low temperature CsPbI2Br solar cells. Sol Energy 216:7–13. https://doi.org/10.1016/j.solener.2020.12.066

    Article  CAS  Google Scholar 

  20. Wang K, Jin ZW, Liang L et al (2018) All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun 9:4935. https://doi.org/10.1038/s41467-018-06915-6

    Article  CAS  Google Scholar 

  21. Wu TH, Wang YB, Li X, Wu YZ, Meng XY, Cui DY, Yang XD, Han LY (2019) Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-pi-acceptor molecules. Adv Energy Mater 9:1803766. https://doi.org/10.1002/aenm.201803766

    Article  CAS  Google Scholar 

  22. Kim J, Park J, Kim YH, Jo W (2022) Improvement of open-circuit voltage deficit via pre-treated NH4+ ion modification of interface between SnO2 and perovskite solar cells. Small 18:2204173. https://doi.org/10.1002/smll.202204173

    Article  CAS  Google Scholar 

  23. Liu LD, Zheng C, Xu Z et al (2023) Manipulating electron density distribution of nicotinamide derivatives toward defect passivation in perovskite solar cells. Adv Energy Mater. https://doi.org/10.1002/aenm.202300610

    Article  Google Scholar 

  24. Hu RJ, Hou WJ, Han GY, Ou T, Chang YZ, Xiao YM (2022) Interfacial chemical bridge constructed by l-cysteine for highly efficient perovskite solar cells. Mater Res Bull 149:111698. https://doi.org/10.1016/j.materresbull.2021.111698

    Article  CAS  Google Scholar 

  25. Zhang DZ, Fu YX, Wu WP et al (2023) Comprehensive passivation for high-performance quasi-2D perovskite LEDs. Small. https://doi.org/10.1002/smll.202206927

    Article  Google Scholar 

  26. Che YH, Liu ZK, Duan YW et al (2022) Hydrazide derivatives for defect passivation in pure CsPbI3 perovskite solar cells. Angew Chem Int Edit 61:e202205012. https://doi.org/10.1002/anie.202205012

    Article  CAS  Google Scholar 

  27. Nabipour H, Batool S, Hu Y (2023) Pectin-coated baclofen-layered zinc hydroxide nanohybrid as a bio-based nanocomposite carrier for oral delivery. IEEE Trans Nanobiosci 22:63–70. https://doi.org/10.1109/Tnb.2022.3155785

    Article  CAS  Google Scholar 

  28. Li GR, Rivarola FWR, Davis NJLK et al (2016) Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater 28:3528. https://doi.org/10.1002/adma.201600064

    Article  CAS  Google Scholar 

  29. Zhao BY, Jin SF, Huang S et al (2018) Thermodynamically stable orthorhombic gamma-CsPbI3 thin films for high-performance photovoltaics. J Am Chem Soc 140:11716–11725. https://doi.org/10.1021/jacs.8b06050

    Article  CAS  Google Scholar 

  30. Sun QH, Tuo BY, Ren ZQ, Xue TY, Zhang YQ, Ma JJ, Li PW, Song YL (2022) A thiourea competitive crystallization strategy for fa-based perovskite solar cells. Adv Funct Mater 32:2208885. https://doi.org/10.1002/adfm.202208885

    Article  CAS  Google Scholar 

  31. Li YY, Lu Y, Huo XM et al (2021) Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning. Rsc Adv 11:15688–15694. https://doi.org/10.1039/d1ra03117a

    Article  CAS  Google Scholar 

  32. Du CH, Huang X, Jiang CY, Pu X, Zhao ZF, Jing L, Hu WG, Wang ZL (2016) Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication. Sci Rep-Uk 6:37132. https://doi.org/10.1038/srep37132

    Article  CAS  Google Scholar 

  33. Mundhaas N, Yu ZSJ, Bush KA, Wang HP, Hausele J, Kavadiya S, McGehee MD, Holman ZC (2019) Series resistance measurements of perovskite solar cells using J(sc)-V-oc measurements. Sol Rrl. https://doi.org/10.1002/solr.201800378

    Article  Google Scholar 

  34. Chen YH, Li NX, Wang LG et al (2019) Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat Commun 10:1112. https://doi.org/10.1038/s41467-019-09093-1

    Article  CAS  Google Scholar 

  35. Ma HL, Wang W, Xu HY et al (2018) Interface state-induced negative differential resistance observed in hybrid perovskite resistive switching memory. Acs Appl Mater Inter 10:21755–21763. https://doi.org/10.1021/acsami.8b07850

    Article  CAS  Google Scholar 

  36. Wang TY, Yang YF, Zhang Y et al (2020) Vacuum-controlled growth of CsPbI2Br for highly efficient and stable all-inorganic perovskite solar cells. Acs Appl Mater Inter 12:21539–21547. https://doi.org/10.1021/acsami.0c01583

    Article  CAS  Google Scholar 

  37. Li Z, Wu W, Ren G, Han W, Li N, Liu C, Guo W (2021) Using 4-chlorobenzoic acid layer toward stable and low-cost cspbi2br perovskite solar cells. Sol Rrl 5:2100347. https://doi.org/10.1002/solr.202100347

    Article  CAS  Google Scholar 

  38. Kun L, Songyang Y, Yeming X et al (2021) Architecturing 1D–2D-3D multidimensional coupled cspbi2br perovskites toward highly effective and stable solar cells. Small. https://doi.org/10.1002/smll.202100888

    Article  Google Scholar 

  39. Zhang GZ, Xie PF, Huang ZS, Yang ZC, Pan ZX, Fang YP, Rao HS, Zhong XH (2021) Modification of energy level alignment for boosting carbon-based CsPbI2Br solar cells with 14% certified efficiency. Adv Funct Mater 31:2011187. https://doi.org/10.1002/adfm.202011187

    Article  CAS  Google Scholar 

  40. Byranvand MM, Kodalle T, Zuo WW et al (2022) One-step thermal gradient- and antisolvent-free crystallization of all-inorganic perovskites for highly efficient and thermally stable solar cells. Adv Sci 9:2202441. https://doi.org/10.1002/advs.202202441

    Article  CAS  Google Scholar 

  41. Dingjian Z, Jincheng H, Jun L et al (2021) Dual passivation strategy for high efficiency inorganic CsPbI2Br solar cells. Sol Rrl. https://doi.org/10.1002/solr.202100112

    Article  Google Scholar 

  42. Beilei Y, Chen L, Wencai Y, Fangying J, Huanqin Y, Fan X, Cuncheng L, Bingqiang C (2021) PMMA passivated CsPbI2Br perovskite film for highly efficient and stable solar cells. J Phys Chem Solids. https://doi.org/10.1016/j.jpcs.2021.110000

    Article  Google Scholar 

  43. Zhu M, Zheng X, Qianyu L et al (2020) Oxidization-free spiro-OMeTAD hole-transporting layer for efficient CsPbI2Br perovskite solar cells. Acs Appl Mater Inter. https://doi.org/10.1021/acsami.0c16355

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62025403 and 61721005), the Natural Science Foundation of Zhejiang Province (No. LD22E020001), “Pioneer” and “Leading Goose” R&D Program of Zhejiang (No. 2022C01215) and the Fundamental Research Funds for the Central Universities (226-2022-00200).

Author information

Authors and Affiliations

Authors

Contributions

Ying Wang and Qiufeng Ye contributed equally to this work. Xuegong Yu and Deren Yang supervised the whole project. Ying Wang and Qiufeng Ye conceived the idea and drafted the manuscript. Ying Wang and Qiufeng Ye fabricated and performed the characterization of solar cells. Pengjie Hang contributed to the FTIR measurements. Yuxin Yao contributed to the PL measurements. Biao Li contributed to the TRPL measurements. Chenxia Kan contributed to the SEM measurements. Daoyong Zhang contributed to the EQE measurements. Xuegong Yu and Deren Yang revised the manuscript. All authors contributed to the discussion of the paper.

Corresponding authors

Correspondence to Xuegong Yu or Deren Yang.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

Not applicable. There are no experiments involving human tissue or any ethical issues.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ye, Q., Hang, P. et al. Synergistic passivation of defects for inorganic perovskite solar cells with reduced open-circuit voltage deficiency. J Mater Sci 58, 14807–14816 (2023). https://doi.org/10.1007/s10853-023-08943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08943-0

Navigation