Skip to main content
Log in

Efficient proton exchange membranes based on bifunctional metal–organic frameworks

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An efficient strategy for increasing the proton conductivity of proton exchange membranes (PEMs) is the introduction of functionalized metal–organic frameworks (MOFs) to establish efficiency proton conduction channels. In this work, a sub-structure fragment flexible bifunctional MOFs UiO-66-NH-SO3H was successfully prepared. Next, UiO-66-NH-SO3H was filled with sulfonated poly (ether ether ketone) (SPEEK) to prepare composite PEMs. The sub-structure fragment of the UiO-66-NH-SO3H functioning as both a donor and an acceptor can promote rapid proton conduction. Furthermore, an effective channel for proton conductivity might be constructed by creating acid–base pairing interaction between the –NH/–NH2 on the UiO-66-NH-SO3H sub-structure fragment and the –SO3H on the backbone of SPEEK. At 80 °C and 100% relative humidity (RH), the UiO-66-NH-SO3H/SPEEK = 30% composite PEMs has the maximum proton conductivity of 0.273 S cm−1, which is 84% higher than the SPEEK membrane. Finally, because of the remarkable compatibility between UiO-66-NH-SO3H and SPEEK, the UiO-66-NH-SO3H/SPEEK = 40% composite PEMs had the maximum proton conductivity of 0.232 S cm−1, the lowest methanol permeability of 4.67 × 10–7 cm2 s−1 and the highest proton selectivity of 21.79 × 104 S s cm−3. This work offers a design and construction method for MOFs with precise structural functionalization to enhance proton conductivity and prevent methanol permeability in PEMs. Thus, the prepared composite PEMs is promising for DMFCs applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this published article. The data can be provided if requested.

References

  1. Olabi AG, Wilberforce T, Abdelkareem MA (2021) Fuel cell application in the automotive industry and future perspective. Energy 214:118955. https://doi.org/10.1016/j.energy.2020.118955

    Article  Google Scholar 

  2. Liu L, Chu X, Liao J, Huang Y, Li Y, Ge Z, Hickner MA, Li N (2018) Tuning the properties of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes and their performance in H2/O2 fuel cells. Energy Environ Sci 11(2):435–446. https://doi.org/10.1039/C7EE02468A

    Article  Google Scholar 

  3. Jiao K, Xuan J, Du Q, Bao Z, Xie B, Wang B, Zhao Y, Fan L, Wang H, Hou Z, Huo S, Brandon NP, Yin Y, Guiver MD (2021) Designing the next generation of proton-exchange membrane fuel cells. Nature 595(7867):361–369. https://doi.org/10.1038/s41586-021-03482-7

    Article  CAS  Google Scholar 

  4. Hegde SN, Manuvalli BB, Kariduraganavar MY (2022) A unique approach for the development of hybrid membranes by incorporating functionalized nanosilica into crosslinked sPVA/TEOS for fuel cell applications. ACS Appl Energy Mater 5(8):9823–9829. https://doi.org/10.1021/acsaem.2c01525

    Article  CAS  Google Scholar 

  5. Wang S, Lin Y, Yang J, Shi L, Yang G, Zhuang X, Li Z (2021) UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane. Int J Hydrog Energy 46(36):19106–19115. https://doi.org/10.1016/j.ijhydene.2021.03.033

    Article  CAS  Google Scholar 

  6. Prykhodko Y, Fatyeyeva K, Hespel L, Marais S (2021) Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application. Chem Eng J 409:117329. https://doi.org/10.1016/j.cej.2020.127329

    Article  CAS  Google Scholar 

  7. Wang M, Chen M, Yang Z, Wang Y, Wang Y, Liu G, Lee JK, Wang X (2018) A study on fuel additive of methanol for room temperature direct methanol fuel cells. Energy Convers Manag 168:270–275. https://doi.org/10.1016/j.enconman.2018.05.006

    Article  CAS  Google Scholar 

  8. Ju J, Shi J, Wang M, Wang L, Cheng B, Yu X, Cai Y, Wang S, Fang L, Kang W (2021) Constructing interconnected nanofibers@ZIF-67 superstructure in nafion membranes for accelerating proton transport and confining methanol permeation. Int J Hydrog Energy 46(78):38782–38794. https://doi.org/10.1016/j.ijhydene.2021.09.110

    Article  CAS  Google Scholar 

  9. Wei G, Liang Y, Wang S, Wang P, Peng J, Yin B, Wang L (2022) Constructing proton transfer channels using CuO nanowires and nanoparticles as porogens in high-temperature proton exchange membranes. ACS Appl Energy Mater 5(8):10276–10286. https://doi.org/10.1021/acsaem.2c02006

    Article  CAS  Google Scholar 

  10. Chen Y, Xu F, Li J, Han Y, Qiao J, Liu J, Xu Y, Lin B (2023) Poly(fluorenyl terphenyl piperidinium) with sulfonated side chains for the application of high-temperature proton exchange membranes. ACS Appl Energy Mater 6(4):2594–2601. https://doi.org/10.1021/acsaem.2c04121

    Article  CAS  Google Scholar 

  11. Cui W, Sun P, Li P, Zhang L, Zhi X, Liu Q, Li Z (2022) Sulfonated polyphosphazene-blended self-cross-linked polybenzimidazole-based high-temperature proton exchange membranes: high efficiency in proton transport at low humidity. ACS Appl Energy Mater 5(9):11526–11539. https://doi.org/10.1021/acsaem.2c01986

    Article  CAS  Google Scholar 

  12. Li P, Guo H, Lv Y, Zhang L, Sun P, Li Z (2022) Bifunctional acid proton conductor doping to improve the comprehensive properties of a cross-linked polybenzimidazole high-temperature proton exchange membrane. ACS Appl Energy Mater 5(4):4956–4969. https://doi.org/10.1021/acsaem.2c00333

    Article  CAS  Google Scholar 

  13. Lv B, Yin H, Huang Z, Geng K, Qin X, Song W, Shao Z (2022) Polyethersulfone/polyvinylpyrrolidone/boron nitride composite membranes for high proton conductivity and long-term stability high-temperature proton exchange membrane fuel cells. J Membr Sci 653:120512. https://doi.org/10.1016/j.memsci.2022.120512

    Article  CAS  Google Scholar 

  14. Liang J, Ge J, Wu K, Zhang Q, Wang J, Ye Z (2020) Sulfonated polyaryletherketone with pendant benzimidazole groups for proton exchange membranes. J Membr Sci 597:117626. https://doi.org/10.1016/j.memsci.2019.117626

    Article  CAS  Google Scholar 

  15. Balasubramanian A, Gunasekaran M, Kannan T (2020) Photo crosslinked stilbene-containing sulfonated polyimide membranes as proton exchange membranes in fuel cell. Eur Polym J 176:111418. https://doi.org/10.1016/j.eurpolymj.2022.111418

    Article  CAS  Google Scholar 

  16. Zhai S, Song H, Jia X, Yang K, Feng M, He S, Lin J (2021) Fabrication of water-insoluble phosphotungstic acid-carbon nitride nanohybrids for promoting proton transport of nanocomposite proton exchange membranes. J Power Sources 506:230195. https://doi.org/10.1016/j.jpowsour.2021.230195

    Article  CAS  Google Scholar 

  17. Cai YY, Zhang QG, Zhu AM, Liu QL (2021) Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction. J Colloid Interface Sci 594:593–603. https://doi.org/10.1016/j.jcis.2021.03.070

    Article  CAS  Google Scholar 

  18. Liu D, Xie Y, Zhong J, Yang F, Pang J, Jiang Z (2022) High methanol resistance semi-crystalline sulfonated poly(ether ketone) proton exchange membrane for direct methanol fuel cell. J Membr Sci 650:120413. https://doi.org/10.1016/j.memsci.2022.120413

    Article  CAS  Google Scholar 

  19. Li W, Jiang J, An H, Dong S, Yue Z, Qian H, Yang H (2021) Self-cross-linked sulfonated poly(ether ether ketone) with pendant sulfoalkoxy groups for proton exchange membrane fuel cells. ACS Appl Energy Mater 4(3):2732–2740. https://doi.org/10.1021/acsaem.1c00022

    Article  CAS  Google Scholar 

  20. Noh YS, Jeong HY, Yoon SJ, Kim H-J, Hong YT, Choi J, So S, Yu DM (2023) Multilayered hydrocarbon ionomer/PTFE composite electrolytes with enhanced performance for energy conversion devices. Int J Hydrog Energy 48(13):5288–5300. https://doi.org/10.1016/j.ijhydene.2022.11.038

    Article  CAS  Google Scholar 

  21. Cai YY, Wang JJ, Cai ZH, Zhang QG, Zhu AM, Liu QL (2021) Enhanced performance of sulfonated poly(ether ether Ketone) hybrid membranes by introducing sulfated MOF-808/graphene oxide composites. ACS Appl Energy Mater 4(9):9664–9672. https://doi.org/10.1021/acsaem.1c01789

    Article  CAS  Google Scholar 

  22. Wang X, Wang D, Wang S, Li J, Liu G, Cui Y, Liang D, Wang X, Yong Z, Wang Z (2022) High-performance proton exchange membranes based on block polybenzimidazole and organic-inorganic fillers with a low acid doping level. ACS Appl Energy Mater 5(2):2553–2563. https://doi.org/10.1021/acsaem.1c04073

    Article  CAS  Google Scholar 

  23. Wang H, Sun N, Xu X, Wang S, Kang W, Zhuang X, Yin Y, Cheng B (2021) Adenosine triphosphate@graphene oxide proton channels for proton exchange membranes constructed via electrostatic layer-by-layer deposition. J Membr Sci 620:118880. https://doi.org/10.1016/j.memsci.2020.118880

    Article  CAS  Google Scholar 

  24. Zhang Y, Wang H, Qian P, Zhou Y, Shi J, Shi H (2020) Sulfonated poly(ether ether ketone)/amine-functionalized graphene oxide hybrid membrane with various chain lengths for vanadium redox flow battery: a comparative study. J Membr Sci 610:118232. https://doi.org/10.1016/j.memsci.2020.118232

    Article  CAS  Google Scholar 

  25. Rao Z, Lan M, Zhu D, Jiang L, Wang Z, Wan H, Tang B, Liu H (2022) Synergistically promoted proton conduction of proton exchange membrane by phosphoric acid functionalized carbon nanotubes and graphene oxide. J Membr Sci 659:120810. https://doi.org/10.1016/j.memsci.2022.120810

    Article  CAS  Google Scholar 

  26. Zhao G, Shi L, Zhang M, Cheng B, Yang G, Zhuang X (2022) Self-assembly of metal-organic framework onto nanofibrous mats to enhance proton conductivity for proton exchange membrane. Int J Hydrog Energy 46(73):36415–36423. https://doi.org/10.1016/j.ijhydene.2021.08.110

    Article  CAS  Google Scholar 

  27. Wang Z, Ren J, Sun Y, Wang L, Fan Y, Zheng J, Qian H, Li S, Xu J, Zhang S (2022) Fluorinated strategy of node structure of Zr-based MOF for construction of high-performance composite polymer electrolyte membranes. J Membr Sci 645:120193. https://doi.org/10.1016/j.memsci.2021.120193

    Article  CAS  Google Scholar 

  28. Rao Z, Feng K, Tang B, Wu P (2017) Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. J Membr Sci 533:160–170. https://doi.org/10.1016/j.memsci.2017.03.031

    Article  CAS  Google Scholar 

  29. Rao Z, Lan M, Wang Z, Wan H, Li G, Zhu J, Tang B, Liu H (2022) Effectively facilitating the proton conduction of proton exchange membrane by polydopamine modified hollow metal–organic framework. J Membr Sci 644:120098. https://doi.org/10.1016/j.memsci.2021.120098

    Article  CAS  Google Scholar 

  30. Li X-M, Wang Y, Wu B, Zeng L (2021) Efficient proton transport in stable functionalized channels of zirconium metal–organic frameworks. ACS Appl Energy Mater 4(8):8303–8310. https://doi.org/10.1021/acsaem.1c01541

    Article  CAS  Google Scholar 

  31. Ryu GY, Jae H, Kim KJ, Kim H, Lee S, Jeon Y, Roh D, Chi WS (2023) Hollow heteropoly acid-functionalized ZIF composite membrane for proton exchange membrane fuel cells. ACS Appl Energy Mater 6(8):4283–4296. https://doi.org/10.1021/acsaem.3c00220

    Article  CAS  Google Scholar 

  32. Sun X, Bai X, Wang Q, Lu Y, Liu S (2022) Phase-changeable polyoxometalate-based acid-base adduct for high-temperature proton conduction. ACS Appl Energy Mater 5(6):7523–7529. https://doi.org/10.1021/acsaem.2c00999

    Article  CAS  Google Scholar 

  33. Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1(9):695–704. https://doi.org/10.1038/nchem.444

    Article  CAS  Google Scholar 

  34. Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed Engl 43(18):2334–2375. https://doi.org/10.1002/anie.200300610

    Article  CAS  Google Scholar 

  35. Lim DW, Kitagawa H (2020) Proton transport in metal–organic frameworks. Chem Rev 120(16):8416–8467. https://doi.org/10.1021/acs.chemrev.9b00842

    Article  CAS  Google Scholar 

  36. Lim DW, Sadakiyo M, Kitagawa H (2019) Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal-organic frameworks. Chem Sci 10(1):16–33. https://doi.org/10.1039/C8SC04475A

    Article  CAS  Google Scholar 

  37. Yoon M, Suh K, Natarajan S, Kim K (2013) Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew Chem Int Ed Engl 52(10):2688–2700. https://doi.org/10.1002/anie.201206410

    Article  CAS  Google Scholar 

  38. Yang F, Xu G, Dou Y, Wang B, Zhang H, Wu H, Zhou W, Li J-R, Chen B (2017) A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy 2(11):877–883. https://doi.org/10.1038/s41560-017-0018-7

    Article  CAS  Google Scholar 

  39. Li ZH, Zeng H, Zeng G, Ru C, Li G, Yan W, Shi Z, Feng S (2020) Multivariate synergistic flexible metal-organic frameworks with superproton conductivity for direct methanol fuel cells. Angew Chem Int Ed Engl 60(51):26577–26581. https://doi.org/10.1002/anie.202112922

    Article  CAS  Google Scholar 

  40. Britt D, Lee C, Uribe-Romo FJ, Furukawa H, Yaghi OM (2010) Ring-opening reactions within porous metal-organic frameworks. Inorg Chem 49(14):6387–6389. https://doi.org/10.1021/ic100652x

    Article  CAS  Google Scholar 

  41. Huang H, Ma Y, Jiang Z, Jiang Z-J (2021) Spindle-like MOFs-derived porous carbon filled sulfonated poly (ether ether ketone): a high performance proton exchange membrane for direct methanol fuel cells. J Membr Sci 636:119585. https://doi.org/10.1016/j.memsci.2021.119585

    Article  CAS  Google Scholar 

  42. Roshanravan B, Younesi H, Abdollahi M, Rahimnejad M, Pyo S-H (2021) Application of proton-conducting sulfonated polysulfone incorporated MIL-100(Fe) composite materials for polymer-electrolyte membrane microbial fuel cells. J Clean Prod 300:126963. https://doi.org/10.1016/j.jclepro.2021.126963

    Article  CAS  Google Scholar 

  43. Wang S, Luo H, Li X, Shi L, Cheng B, Zhuang X, Li Z (2021) Amino acid-functionalized metal organic framework with excellent proton conductivity for proton exchange membranes. Int J Hydrog Energy 46(1):1163–1173. https://doi.org/10.1016/j.ijhydene.2020.09.235

    Article  CAS  Google Scholar 

  44. Zhai S, Jia X, Lu Z, Ai Y, Liu X, Lin J, He S, Wang Q, Chen L (2022) Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers. J Membr Sci 662:121003. https://doi.org/10.1016/j.memsci.2022.121003

    Article  CAS  Google Scholar 

  45. Xiao F, Hu X, Chen Y, Zhang Y (2019) Porous Zr-based metal–organic frameworks (Zr-MOFs)-incorporated thin-film nanocomposite membrane toward enhanced desalination performance. ACS Appl Mater Interfaces 11(50):47390–47403. https://doi.org/10.1021/acsami.9b17212

    Article  CAS  Google Scholar 

  46. Mukhopadhyay S, Debgupta J, Singh C, Sarkar R, Basu O, Das SK (2019) Designing UiO-66-based superprotonic conductor with the highest metal-organic framework based proton conductivity. ACS Appl Mater Interfaces 11(14):13423–13432. https://doi.org/10.1021/acsami.9b01121

    Article  CAS  Google Scholar 

  47. Huang Z, Lv B, Zhou L, Qin X, Shao Z (2022) Ultra-thin h-BN doped high sulfonation sulfonated poly (ether-ether-ketone) of PTFE-reinforced proton exchange membrane. J Membr Sci 644:120099. https://doi.org/10.1016/j.memsci.2021.120099

    Article  CAS  Google Scholar 

  48. Guo H, Li Z, Lv Y, Pei H, Sun P, Zhang L, Cui W, Yin X, Hui H (2021) Monolithic macromolecule membrane based on polybenzimidazole: achieving high proton conductivity and low fuel permeability through multiple cross-linking. ACS Appl Energy Mater 4(9):8969–8980. https://doi.org/10.1021/acsaem.1c01233

    Article  CAS  Google Scholar 

  49. Cheluri NP, Kannan T (2023) Novel sulfonated poly(oxybenzimidazole) membranes bearing sulfo-napthalimide pendant groups with improved proton conductivity and fuel cell performance. Int J Hydrog Energy 48(31):11844–11859. https://doi.org/10.1016/j.ijhydene.2022.11.277

    Article  CAS  Google Scholar 

  50. Zhao G, Xu X, Shi L, Cheng B, Zhuang X (2020) Bio-analogue l-lysine lined arrangement on nanofibers with superior proton-conduction for proton exchange membrane. Solid State Ionics 348:115289. https://doi.org/10.1016/j.ssi.2020.115289

    Article  CAS  Google Scholar 

  51. Jiang J, Jiang X, Xiao M, Han D, Wang S, Meng Y (2021) Polybenzimidazole-based semi-interpenetrating proton exchange membrane with enhanced stability and excellent performance for high-temperature proton exchange membrane fuel cells. ACS Appl Energy Mater 4(11):13316–13326. https://doi.org/10.1021/acsaem.1c03013

    Article  CAS  Google Scholar 

  52. Li L, Liu X, Guo Y, Ma Y, Zhuang X, Kang W (2022) Reasonable construction of proton conducting channel via biomimetic caterpillar-like alumina fiber to improve the properties of its composite proton exchange membrane. Int J Hydrog Energy 47(69):29915–29924. https://doi.org/10.1016/j.ijhydene.2022.06.278

    Article  CAS  Google Scholar 

  53. Zhao G, Xu X, Zhao H, Shi L, Zhuang X, Cheng B, Yin Y (2020) Zeolitic imidazolate framework decorated on 3D nanofiber network towards superior proton conduction for proton exchange membrane. J Membr Sci 601:117914. https://doi.org/10.1016/j.memsci.2020.117914

    Article  CAS  Google Scholar 

  54. Cao M, Xiao F, Yang Z, Chen Y, Lin L (2022) Purification of oil-containing emulsified wastewater via PAN nanofiber membrane loading PVP-UiO-66-NH2. Sep Purif Technol 297:117914. https://doi.org/10.1016/j.seppur.2022.121514

    Article  CAS  Google Scholar 

  55. Xiao F, Cao M, Chen Y (2022) MOFs-mediated nanoscale Turing structure in polyamide membrane for enhanced nanofiltration. Desalination 544:116146. https://doi.org/10.1016/j.desal.2022.116146

    Article  CAS  Google Scholar 

  56. Guo H, Li Z, Pei H, Sun P, Zhang L, Li P, Yin X (2022) Stable branched polybenzimidazole high temperature proton exchange membrane: crosslinking and pentaphosphonic-acid doping lower fuel permeability and enhanced proton transport. J Membr Sci 644:120092. https://doi.org/10.1016/j.jechem.2021.04.061

    Article  CAS  Google Scholar 

  57. Ru C, Li Z, Zhao C, Duan Y, Zhuang Z, Bu F, Na H (2018) Enhanced proton conductivity of sulfonated hybrid poly(arylene ether ketone) membranes by incorporating an amino-sulfo bifunctionalized metal–organic framework for direct methanol fuel cells. ACS Appl Mater Interfaces 10(9):7963–7973. https://doi.org/10.1021/acsami.7b17299

    Article  CAS  Google Scholar 

  58. Sarker M, Song JY, Jhung SH (2018) Carboxylic-acid-functionalized UiO-66-NH2: a promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chem Eng J 331:124–131. https://doi.org/10.1016/j.cej.2017.08.017

    Article  CAS  Google Scholar 

  59. Xiao F, Cao M, Chu R, Hu X, Shi W, Chen Y (2022) Novel perylene-3, 4, 9, 10-tetracarboxylic dianhydride modified Zr-MOFs/graphene oxide membrane for dye wastewater treatment. J Colloid Interface Sci 610:671–686. https://doi.org/10.1016/j.jcis.2021.11.113

    Article  CAS  Google Scholar 

  60. Long J, Zhang X, Zeng S, Pei T, Ma H, Li X, Meng X (2023) Constructing a long-range proton conduction bridge in sulfonated polyetheretherketone membranes with low DS by incorporating acid-base bi-functionalized metal organic frameworks. Int J Hydrog Energy 48(5):2001–2012. https://doi.org/10.1016/j.ijhydene.2022.10.085

    Article  CAS  Google Scholar 

  61. Wu A, Liu J, Huang J, Min Y, Wang Y, Wang S, Wang L (2022) Constructing high-density hydrogen bonding networks via introducing the bipyridine group for high-performance fuel cell proton exchange membranes. ACS Appl Energy Mater 5(9):11815–11824. https://doi.org/10.1021/acsaem.2c02346

    Article  CAS  Google Scholar 

  62. Jinnah MMA, Umadevi M, Ramakrishnan V (2004) Vibrational spectruml studies of (beta-alanine) beta-alaninium nitrate. J Raman Spectrosc 35:956–960. https://doi.org/10.1002/jrs.1240

    Article  CAS  Google Scholar 

  63. Vaz PD, Ribeiro-Claro PJ (2003) Ribeiro-Claro C–H center dot center dot center dot O hydrogen bonds in liquid cyclohexanone revealed by the vC=O splitting and the vC–H blue shift. J Raman Spectrosc 34:863–867. https://doi.org/10.1002/jrs.1066

    Article  CAS  Google Scholar 

  64. Yui H, Nakajima T, Hirao K, Sawada T (2003) Enhancement of the stimulated Raman scattering of benzene-toluene mixtures under strong excitation condition in the liquid phase. J Phys Chem A 107:968–973. https://doi.org/10.1021/jp021993l

    Article  CAS  Google Scholar 

  65. Wei P, Sui Y, Li X, Liu Q, Zhu B, Cong C, Meng X, Zhou Q (2022) Sandwich-structure PI/SPEEK/PI proton exchange membrane developed for achieving the high durability on excellent proton conductivity and stability. J Membr Sci 644:120116. https://doi.org/10.1016/j.memsci.2021.120116

    Article  CAS  Google Scholar 

  66. Waribam P, Jaiyen K, Samart C, Ogawa M, Guan G, Kongparakul S (2023) MXene-copper oxide/sulfonated polyether ether ketone as a hybrid composite proton exchange membrane in electrochemical water electrolysis. Catal Today 407:96–106. https://doi.org/10.1016/j.cattod.2022.02.007

    Article  CAS  Google Scholar 

  67. Guo Z, Chen J, Byun JJ, Cai R, Perez-Page M, Sahoo M, Ji Z, Haigh SJ, Holmes SM (2022) High-performance polymer electrolyte membranes incorporated with 2D silica nanosheets in high-temperature proton exchange membrane fuel cells. J Energy Chem 64:323–334. https://doi.org/10.1016/j.jechem.2021.04.061

    Article  CAS  Google Scholar 

  68. Zeng M, Liu W, Guo H, Li T, Li Q, Zhao C, Li X, Li H (2022) Polyoxometalate-cross-linked proton exchange membranes with post-assembled nanostructures for high-temperature proton conduction. ACS Appl Energy Mater 5(7):9058–9069. https://doi.org/10.1021/acsaem.2c01508

    Article  CAS  Google Scholar 

  69. Xue B, Zhou S, Yao J, Wang F, Zheng J, Li S, Zhang S (2020) Novel proton exchange membranes based on sulfonated-phosphonated poly (p-phenylene-co-aryl ether ketone) terpolymers with microblock structures for passive direct methanol fuel cells. J Membr Sci 594:117466. https://doi.org/10.1016/j.memsci.2019.117466

    Article  CAS  Google Scholar 

  70. Liu L, Wang Y, Liu S, Li N, Hu Z, Chen S (2022) Novel bifunctional fillers (ATP/P-CNOs) for sulfonated poly(aryl ether sulfone) matrix for improved power output and durability of H2/O2 fuel cell at low humidity. J Membr Sci 660:120774. https://doi.org/10.1016/j.memsci.2022.120774

    Article  CAS  Google Scholar 

  71. Wu J, Nie S, Liu H, Gong C, Zhang Q, Xu Z, Liao G (2022) Design and development of nucleobase modified sulfonated poly(ether ether ketone) membranes for high-performance direct methanol fuel cells. J Mater Chem A 10(37):19914–19924. https://doi.org/10.1039/D2TA03166C

    Article  CAS  Google Scholar 

  72. Ban T, Guo M, Wang Y, Zhang Y, Zhu X (2023) High-performance aromatic proton exchange membranes bearing multiple flexible pendant sulfonate groups: exploring side chain length and main chain polarity. J Membr Sci 668:121255. https://doi.org/10.1016/j.memsci.2022.121255

    Article  CAS  Google Scholar 

  73. Liu L, Li X, Liu Z, Zhang S, Qian L, Chen Z, Li J, Fang P, He C (2022) High-performance fuel cells using Nafion composite membranes with alignment of sulfonated graphene oxides induced by a strong magnetic field. J Membr Sci 653:120516. https://doi.org/10.1016/j.memsci.2022.120516

    Article  CAS  Google Scholar 

  74. Xu X, Li R, Tang C, Wang H, Zhuang X, Liu Y, Kang W, Shi L (2018) Cellulose nanofiber-embedded sulfonated poly (ether sulfone) membranes for proton exchange membrane fuel cells. Carbohydr Polym 184:299–306. https://doi.org/10.1016/j.carbpol.2017.12.074

    Article  CAS  Google Scholar 

  75. Altaf F, Ahmed S, Dastan D, Batool R, Rehman ZU, Shi Z, Hameed MU, Bocchetta P, Jacob K (2022) Novel sepiolite reinforced emerging composite polymer electrolyte membranes for high-performance direct methanol fuel cells. Mater Today Chem 24:100843. https://doi.org/10.1016/j.mtchem.2022.100843

    Article  CAS  Google Scholar 

  76. Gao H, Dong C, Wang Q, Zhu H, Meng X, Cong C, Zhou Q (2018) Improving the proton conductivity of proton exchange membranes via incorporation of HPW-functionalized mesoporous silica nanospheres into SPEEK. Int J Hydrog Energy 43(48):21940–21948. https://doi.org/10.1016/j.ijhydene.2018.08.214

    Article  CAS  Google Scholar 

  77. Duan Y, Ru C, Pang Y, Li J, Liu B, Zhao C (2022) Crosslinked PAEK-based nanofiber reinforced Nafion membrane with ion-paired interfaces towards high-concentration DMFC. J Membr Sci 655:120589. https://doi.org/10.1016/j.memsci.2022.120589

    Article  CAS  Google Scholar 

  78. Zhang J, Liu H, Ma Y, Wang H, Chen C, Yan G, Tian M, Long Y, Ning X, Cheng B (2022) Construction of dual-interface proton channels based on γ-polyglutamic acid@cellulose whisker/PVDF nanofibers for proton exchange membranes. J Power Sources 548:231981. https://doi.org/10.1016/j.jpowsour.2022.231981

    Article  CAS  Google Scholar 

  79. Eren EO, Özkan N, Devrim Y (2022) Preparation of polybenzimidazole/ZIF-8 and polybenzimidazole/UiO-66 composite membranes with enhanced proton conductivity. Int J Hydrog Energy 47(45):19690–19701. https://doi.org/10.1016/j.ijhydene.2021.11.045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge this work was supported by the Science and Technology Plans of Tianjin (No. 20YFZCSN00930). We would like to thank the Analytical & Testing Center of Tiangong University for the Characterization Instruments such as Transmission Electron Microscope and Field Emission Scanning Electron Microscope. They have provided strong support for our work.

Author information

Authors and Affiliations

Authors

Contributions

PL contributed to methodology, validation, formal analysis, data curation and writing- original draft preparation. YC contributed to conceptualization, software, resources and writing—review & editing. FX contributed to methodology, software and validation. MC contributed to methodology, software and validation. JP contributed to electrochemical test. JZ contributed to methanol permeability test. HL, KZ, XZ and YZ contributed to investigation.

Corresponding author

Correspondence to Yingbo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56532 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Chen, Y., Xiao, F. et al. Efficient proton exchange membranes based on bifunctional metal–organic frameworks. J Mater Sci 58, 14154–14176 (2023). https://doi.org/10.1007/s10853-023-08903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08903-8

Navigation