Skip to main content
Log in

A high-yield and size-controlled production of graphene by optimizing fluid forces

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Efficient graphene production is critical for commercial applications. Liquid-phase exfoliation, one of the most promising methods for mass production of graphene, is limited by small size and low yield. By optimizing the fluid forces, we have achieved the size-controlled production of high-quality graphene. The bending and cleavage caused by the collision promote cavitation and shear exfoliation. High-aspect-ratio graphene has an average area of ~ 1.5μm2 and a thickness of ~ 1.5 nm. Simultaneously, the dispersion concentration of small size graphene (average area ~ 0.6μm2) is 0.17 mg mL−1, while the yield and efficiency reach 30% and 15%·h−1, respectively, through recycling sediment (initial concentration: 1 mg mL−1). Furthermore, the binary solvent of isopropanol and water is eco-friendly, low boiling, cost-effective. Jet collision can also be applied for exfoliation of other two-dimensional materials such as h-BN. This finding is essential for optimizing the design of liquid-phase exfoliation devices to obtain appropriate size and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data and code availability

All data will be available from the corresponding author on request.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  3. Tian J, Wu S, Yin X, Wu W (2019) Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl Surf Sci 496:143696. https://doi.org/10.1016/j.apsusc.2019.143696

    Article  CAS  Google Scholar 

  4. Zhang X, Navarathna CM, Leng W, Karunaratne T, Thirumalai RVKG, Kim Y, Pittman CU, Mlsna T et al (2021) Lignin-based few-layered graphene-encapsulated iron nanoparticles for water remediation. Chem Eng J 417:129199. https://doi.org/10.1016/j.cej.2021.129199

    Article  CAS  Google Scholar 

  5. Li K, Yang W, Yi M, Shen Z (2021) Graphene-based pressure sensor and strain sensor for detecting human activities. Smart Mater Struct 30:85027. https://doi.org/10.1088/1361-665X/ac0d8b

    Article  CAS  Google Scholar 

  6. Hashemi Karouei SF, Milani Moghaddam H, Saadat Niavol S (2021) Characterization and gas sensing properties of graphene/polyaniline nanocomposite with long-term stability under high humidity. J Mater Sci 56:4239–4253. https://doi.org/10.1007/s10853-020-05532-3

    Article  CAS  Google Scholar 

  7. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  8. Ashok Kumar SS, Bashir S, Ramesh K, Ramesh S (2022) A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future. J Mater Sci 57:12236–12278. https://doi.org/10.1007/s10853-022-07346-x

    Article  CAS  Google Scholar 

  9. Safian MT, Umar K, Mohamad Ibrahim MN (2021) Synthesis and scalability of graphene and its derivatives: A journey towards sustainable and commercial material. J Clean Prod 318:128603. https://doi.org/10.1016/j.jclepro.2021.128603

    Article  CAS  Google Scholar 

  10. Kumar N, Salehiyan R, Chauke V, Joseph Botlhoko O, Setshedi K, Scriba M, Masukume M, Sinha Ray S (2021) Top-down synthesis of graphene: a comprehensive review. FlatChem 27:100224. https://doi.org/10.1016/j.flatc.2021.100224

    Article  CAS  Google Scholar 

  11. Rasyotra A, Thakur A, Gaykwad B, Chakrabarty S, Bayad I, Parikh J, Jasuja K (2023) A review of low-cost approaches to synthesize graphene and its functional composites. J Mater Sci 58:4359–4383. https://doi.org/10.1007/s10853-023-08304-x

    Article  CAS  Google Scholar 

  12. Liu F, Li P, An H, Peng P, McLean B, Ding F (2022) Achievements and challenges of graphene chemical vapor deposition growth. Adv Funct Mater 32:2203191. https://doi.org/10.1002/adfm.202203191

    Article  CAS  Google Scholar 

  13. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1039/B917103G

    Article  CAS  Google Scholar 

  14. Shi Z, He P, Wang N, Liu Y, Chen X, Li Y, Ding G, Yu Q et al (2022) Bubble-mediated mass production of graphene: a review. Adv Funct Mater 32:2203124. https://doi.org/10.1002/adfm.202203124

    Article  CAS  Google Scholar 

  15. Lv P, Li X, Zhang Z, Nie B, Wu Y, Deng N, Tian H, Ren T et al (2022) Industrial-scale production of high-quality graphene sheets by millstone grinders. J Phys D: Appl Phys 55:164002. https://doi.org/10.1088/1361-6463/ac4652

    Article  Google Scholar 

  16. Liang S, Shen Z, Yi M, Liu L, Zhang X, Ma S (2016) In-situ exfoliated graphene for high-performance water-based lubricants. Carbon 96:1181–1190. https://doi.org/10.1016/j.carbon.2015.10.077

    Article  CAS  Google Scholar 

  17. Ma H, Shen Z, Yi M, Ben S, Liang S, Liu L, Zhang Y, Zhang X et al (2017) Direct exfoliation of graphite in water with addition of ammonia solution. J Colloid Interface Sci 503:68–75. https://doi.org/10.1016/j.jcis.2017.04.070

    Article  CAS  Google Scholar 

  18. Morton JA, Kaur A, Khavari M, Tyurnina AV, Priyadarshi A, Eskin DG, Mi J, Porfyrakis K et al (2023) An eco-friendly solution for liquid phase exfoliation of graphite under optimised ultrasonication conditions. Carbon 204:434–446. https://doi.org/10.1016/j.carbon.2022.12.070

    Article  CAS  Google Scholar 

  19. Rizvi R, Nguyen EP, Kowal MD, Mak WH, Rasel S, Islam MA, Abdelaal A, Joshi AS et al (2018) High-Throughput Continuous Production of Shear-Exfoliated 2D Layered Materials using Compressible Flows. Adv Mater 30:1800200. https://doi.org/10.1002/adma.201800200

    Article  CAS  Google Scholar 

  20. Arao Y, Mizuno Y, Araki K, Kubouchi M (2016) Mass production of high-aspect-ratio few-layer-graphene by high-speed laminar flow. Carbon 102:330–338. https://doi.org/10.1016/j.carbon.2016.02.046

    Article  CAS  Google Scholar 

  21. Zhang K, Tang J, Yuan J, Li J, Sun Y, Matsuba Y, Zhu D, Qin L (2018) Production of few-layer graphene via enhanced high-pressure shear exfoliation in liquid for supercapacitor applications. ACS Appl Nano Mater 1:2877–2884. https://doi.org/10.1021/acsanm.8b00515

    Article  CAS  Google Scholar 

  22. Wang Y, Chen T, Liu H, Wang X, Zhang X (2019) Direct liquid phase exfoliation of graphite to produce few-layer graphene by microfluidization. J Nanosci Nanotechnol 19:2078–2086. https://doi.org/10.1166/jnn.2019.15805

    Article  CAS  Google Scholar 

  23. Zhang N, Zhang Y, Duan C, Li S, Yang Z, Zhang X, Wang T, Wang Q (2021) Supercritical CO2-assisted microfluidization as ultra-high efficiency strategy for graphene preparation. J Mater Sci 56:15653–15666. https://doi.org/10.1007/s10853-021-05903-4

    Article  CAS  Google Scholar 

  24. Liscio A, Kouroupis-Agalou K, Betriu XD, Kovtun A, Treossi E, Pugno NM, De Luca G, Giorgini L et al (2017) Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation. 2D Mater 4:25017. https://doi.org/10.1088/2053-1583/aa57ff

    Article  CAS  Google Scholar 

  25. Kouroupis-Agalou K, Liscio A, Treossi E, Ortolani L, Morandi V, Pugno NM, Palermo V (2014) Fragmentation and exfoliation of 2-dimensional materials: a statistical approach. Nanoscale 6:5926–5933. https://doi.org/10.1039/C3NR06919B

    Article  CAS  Google Scholar 

  26. Turner P, Hodnett M, Dorey R, Carey JD (2019) Controlled sonication as a route to in-situ graphene flake size control. Sci Rep 9:8710. https://doi.org/10.1038/s41598-019-45059-5

    Article  CAS  Google Scholar 

  27. Li Z, Young RJ, Backes C, Zhao W, Zhang X, Zhukov AA, Tillotson E, Conlan AP et al (2020) Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano 14:10976–10985. https://doi.org/10.1021/acsnano.0c03916

    Article  CAS  Google Scholar 

  28. Karagiannidis PG, Hodge SA, Lombardi L, Tomarchio F, Decorde N, Milana S, Goykhman I, Su Y et al (2017) Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11:2742–2755. https://doi.org/10.1021/acsnano.6b07735

    Article  CAS  Google Scholar 

  29. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  30. Yao Y, Ren L, Gao S, Li S (2017) Histogram method for reliable thickness measurements of graphene films using atomic force microscopy (AFM). J Mater Sci Technol 33:815–820. https://doi.org/10.1016/j.jmst.2016.07.020

    Article  Google Scholar 

  31. Endoh N, Akiyama S, Tashima K, Suwa K, Kamogawa T, Kohama R, Funakubo K, Konishi S et al (2021) High-quality few-layer graphene on single-crystalline SiC thin film grown on affordable wafer for device applications. Nanomaterials 11(2):392. https://doi.org/10.3390/nano11020392

    Article  CAS  Google Scholar 

  32. Okmi A, Xiao X, Zhang Y, He R, Olunloyo O, Harris SB, Jabegu T, Li N et al (2022) Discovery of graphene-water membrane structure: toward high-quality graphene process. Adv Sci (Weinh) 9:2201336. https://doi.org/10.1002/advs.202201336

    Article  CAS  Google Scholar 

  33. Tang X, Yang Z, Liang J (2017) Efficient strategy of chlorine-assisted liquid-phase exfoliation of graphite. J Mater Sci 52:3786–3793. https://doi.org/10.1007/s10853-016-0600-6

    Article  CAS  Google Scholar 

  34. Yang B, Zhang S, Lv J, Li S, Shi Y, Hu D, Ma W (2021) Large-scale and green production of multi-layer graphene in deep eutectic solvents. J Mater Sci 56:4615–4623. https://doi.org/10.1007/s10853-020-05209-x

    Article  CAS  Google Scholar 

  35. Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  36. Zólyomi V, Koltai J, Kürti J (2011) Resonance Raman spectroscopy of graphite and graphene. Physica Status Solidi (B) 248:2435–2444. https://doi.org/10.1002/pssb.201100295

    Article  CAS  Google Scholar 

  37. Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condensed Matter Mater Phys 61:14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  38. Cançado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A et al (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196. https://doi.org/10.1021/nl201432g

    Article  CAS  Google Scholar 

  39. Mitoma N, Nouchi R, Tanigaki K (2013) Photo-oxidation of graphene in the presence of water. J Phys Chem C 117:1453–1456. https://doi.org/10.1021/jp305823u

    Article  CAS  Google Scholar 

  40. Wróblewska A, Dużyńska A, Judek J, Stobiński L, Żerańska K, Gertych AP, Zdrojek M (2017) Statistical analysis of the reduction process of graphene oxide probed by Raman spectroscopy mapping. J Phys: Condens Matter 29:475201. https://doi.org/10.1088/1361-648X/aa92fe

    Article  Google Scholar 

  41. Pang S, Hernandez Y, Feng X, Müllen K (2011) Graphene as transparent electrode material for organic electronics. Adv Mater 23:2779–2795. https://doi.org/10.1002/adma.201100304

    Article  CAS  Google Scholar 

  42. Yi M, Shen Z (2014) Kitchen blender for producing high-quality few-layer graphene. Carbon 78:622–626. https://doi.org/10.1016/j.carbon.2014.07.035

    Article  CAS  Google Scholar 

  43. Kim J, Kwon S, Cho D, Kang B, Kwon H, Kim Y, Park SO, Jung GY et al (2015) Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat Commun 6:8294. https://doi.org/10.1038/ncomms9294

    Article  CAS  Google Scholar 

  44. Guardia L, Fernández-Merino MJ, Paredes JI, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49:1653–1662. https://doi.org/10.1016/j.carbon.2010.12.049

    Article  CAS  Google Scholar 

  45. Zhang S, Zhang Z, Yang W (2016) High-yield exfoliation of graphene using ternary-solvent strategy for detecting volatile organic compounds. Appl Surf Sci 360:323–328. https://doi.org/10.1016/j.apsusc.2015.10.220

    Article  CAS  Google Scholar 

  46. Fu C, Yang X (2013) Molecular simulation of interfacial mechanics for solvent exfoliation of graphene from graphite. Carbon 55:350–360. https://doi.org/10.1016/j.carbon.2012.12.083

    Article  CAS  Google Scholar 

  47. Yang P, Liu F (2014) Understanding graphene production by ionic surfactant exfoliation: a molecular dynamics simulation study. J Appl Phys. 116:014304. https://doi.org/10.1063/1.4885159

    Article  CAS  Google Scholar 

  48. Chen X, Dobson JF, Raston CL (2012) Vortex fluidic exfoliation of graphite and boron nitride. Chem Commun (Camb) 48:3703–3705. https://doi.org/10.1039/C2CC17611D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (YWF-22-L-1219) and the Special Funds for Co-construction Project of Beijing Municipal Commission of Education (25500002016105002).

Author information

Authors and Affiliations

Authors

Contributions

Youchang Wang helped in conceptualization, methodology, investigation, data curation, writing—original draft. Xiaojing Zhang contributed to validation, investigation, writing—review & editing. Lei Liu performed methodology, supervision, visualization. Min Yi was involved in writing—review & editing. Zhigang Shen helped in conceptualization, resources, funding acquisition. Kai Li helped in data curation, investigation. Yuwei Zhu was involved in conceptualization, methodology.

Corresponding author

Correspondence to Xiaojing Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 2883 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, X., Liu, L. et al. A high-yield and size-controlled production of graphene by optimizing fluid forces. J Mater Sci 58, 13946–13956 (2023). https://doi.org/10.1007/s10853-023-08897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08897-3

Navigation