Skip to main content
Log in

Synthesis and characterization of CNT@SnO2 decorated graphene anodes for Li-ion batteries as free-standing and flexible

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SnO2 anode material is considered to be a promising anode material for lithium-ion batteries owing to its high theoretical capacity. However, the application of SnO2 has been dramatically restricted because of pulverization led by the volume expansion during the charge/discharge process. To overcome these drawbacks, herein, SnO2 coated carbon nano tubes (CNT@SnO2) decorated graphene anode as free-standing and flexible was prepared and investigated for Li-ion anode application. The fine dispersion of SnO2 nanocrystals onto CNT surfaces and decoration of this structure between graphene layers not only suppresses the volume expansion but also effectively avoids aggregation of the SnO2, increases the specific surface area and active sites, and improves the electrical conductivity. The free-standing and flexible composite anode exhibit excellent reversible capacity, high Coulombic efficiency, and good capacity retention.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data and code availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hatipoglu G, Alaf M, Akbulut H (2019) Electrochemical performances of graphene and MWCNT supported metallurgical grade silicon anodes. J Mater Sci Mater Electron 30:2067–2079. https://doi.org/10.1007/s10854-018-0478-y

    Article  CAS  Google Scholar 

  2. Demir E, Hayat Soytas S, Demir-Cakan R (2019) Bismuth oxide nanoparticles embedded carbon nanofibers as self-standing anode material for Na-ion batteries. Solid State Ionics 342:115066. https://doi.org/10.1016/j.ssi.2019.115066

    Article  CAS  Google Scholar 

  3. Qi F, Shao L, Lu X et al (2022) MXene-derived TiSe2/TiO2/C heterostructured hexagonal prisms as high rate anodes for Na-ion and K-ion batteries. Appl Surf Sci 605:154653. https://doi.org/10.1016/j.apsusc.2022.154653

    Article  CAS  Google Scholar 

  4. Yasar S, Söğütlü İ, Mert H et al (2020) Zigzag and armchair AlN nanotubes as anode materials for Mg-ion batteries: computational study. Solid State Sci 110:106448. https://doi.org/10.1016/j.solidstatesciences.2020.106448

    Article  CAS  Google Scholar 

  5. Li C, Li J, Sun X et al (2022) Constructing protective layer on electrode for ultra-enduring Zn ions batteries. Appl Surf Sci 605:154660. https://doi.org/10.1016/j.apsusc.2022.154660

    Article  CAS  Google Scholar 

  6. Abavi-Torghabeh N, Kalantarian MM, Dehkhoda S, Sadeghian Z (2023) A systematic evaluation of charge-discharge behaviors, performance, and rate-capability of Al-ion batteries. Electrochim Acta 437:141508. https://doi.org/10.1016/j.electacta.2022.141508

    Article  CAS  Google Scholar 

  7. Cao Y, Sharma K, Rajhi AA et al (2022) Boron-carbide nanosheets: promising anodes for Ca-ion batteries. J Electroanal Chem 910:115929. https://doi.org/10.1016/j.jelechem.2021.115929

    Article  CAS  Google Scholar 

  8. El Kharbachi A, Zavorotynska O, Latroche M et al (2020) Exploits, advances and challenges benefiting beyond Li-ion battery technologies. J Alloys Compd 817:153261. https://doi.org/10.1016/j.jallcom.2019.153261

    Article  CAS  Google Scholar 

  9. Pal D, Chakraborty S, Chattopadhyay S (2021) Recent progress in al-, k-, and zn-ion batteries: experimental and theoretical viewpoints. Energy Technol 9:2100382. https://doi.org/10.1002/ente.202100382

    Article  CAS  Google Scholar 

  10. Deng X, Zhu M, Ke J et al (2021) Synthesis and electrochemical performances of ternary nanocomposite SnO2@MoO3@graphene as high-performance anode material for lithium-ion batteries. Chem Phys Lett 770:138408. https://doi.org/10.1016/j.cplett.2021.138408

    Article  CAS  Google Scholar 

  11. Venkatesan N, Shanmugharaj AM, Reddy MJK et al (2022) Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect. J Mater Res 37:3931–3941. https://doi.org/10.1557/s43578-022-00810-z

    Article  CAS  Google Scholar 

  12. Zhao Y, Li X, Yan B et al (2015) Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: a review. J Power Sources 274:869–884. https://doi.org/10.1016/j.jpowsour.2014.10.008

    Article  CAS  Google Scholar 

  13. Wang B, Li X, Qiu T et al (2013) High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. Nano Lett 13:5578–5584. https://doi.org/10.1021/nl403231v

    Article  CAS  Google Scholar 

  14. Li X, Zhang Y, Zhong Q et al (2014) Surface decoration with MnO2 nanoplatelets on graphene/TiO 2 (B) hybrids for rechargeable lithium-ion batteries. Appl Surf Sci 313:877–882. https://doi.org/10.1016/j.apsusc.2014.06.096

    Article  CAS  Google Scholar 

  15. Tang X, Yao X, Chen Y et al (2014) CuInZnS-decorated graphene as a high-rate durable anode for lithium-ion batteries. J Power Sources 257:90–95. https://doi.org/10.1016/j.jpowsour.2014.01.107

    Article  CAS  Google Scholar 

  16. Cheng Y, Huang J, Li R et al (2015) Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery. Electrochim Acta 180:227–233. https://doi.org/10.1016/j.electacta.2015.08.125

    Article  CAS  Google Scholar 

  17. Nzereogu PU, Omah AD, Ezema FI et al (2022) Anode materials for lithium-ion batteries: a review. Appl Surf Sci Adv 9:100233. https://doi.org/10.1016/j.apsadv.2022.100233

    Article  Google Scholar 

  18. Bethencourt L, Aguiar I, Pérez Barthaburu M et al (2022) From a novel synthesis method for bismuth tri-iodide nanoparticles to a solution-processed hybrid material: biI3-conducting polymer. J Mater Sci 57:17592–17608. https://doi.org/10.1007/s10853-022-07703-w

    Article  CAS  Google Scholar 

  19. Wang X, Zheng T, Cheng Y et al (2021) SnO 2 /Sn/Carbon nanohybrid lithium-ion battery anode with high reversible capacity and excellent cyclic stability. Nano Sel 2:642–653. https://doi.org/10.1002/nano.202000213

    Article  CAS  Google Scholar 

  20. Wang Y, Huang ZX, Shi Y et al (2015) Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Sci Rep 5:1–8. https://doi.org/10.1038/srep09164

    Article  Google Scholar 

  21. Chen JS, Lou XW (2012) SnO 2 and TiO 2 nanosheets for lithium-ion batteries. Mater Today 15:246–254. https://doi.org/10.1016/S1369-7021(12)70115-3

    Article  CAS  Google Scholar 

  22. Alaf M, Gultekin D, Akbulut H (2013) Electrochemical properties of free-standing Sn/SnO2/multi-walled carbon nano tube anode papers for Li-ion batteries. In: Applied Surface Science. pp 244–251

  23. Srinivasan NR, Mitra S, Bandyopadhyaya R (2014) Improved electrochemical performance of SnO2–mesoporous carbon hybrid as a negative electrode for lithium ion battery applications. Phys Chem Chem Phys 16:6630. https://doi.org/10.1039/c3cp54492c

    Article  CAS  Google Scholar 

  24. Kebede MA (2020) Tin oxide–based anodes for both lithium-ion and sodium-ion batteries. Curr Opin Electrochem 21:182–187. https://doi.org/10.1016/j.coelec.2020.02.003

    Article  CAS  Google Scholar 

  25. Guo S, Feng Y, Wang L et al (2021) Architectural engineering achieves high-performance alloying anodes for lithium and sodium ion batteries. Small 17:1–26. https://doi.org/10.1002/smll.202005248

    Article  CAS  Google Scholar 

  26. Dai L, Zhong X, Zou J et al (2021) Highly ordered sno2 nanopillar array as binder-free anodes for long-life and high-rate li-ion batteries. Nanomaterials 11:1307. https://doi.org/10.3390/nano11051307

    Article  CAS  Google Scholar 

  27. Huang YY, Han D, He YB et al (2015) Si nanoparticles intercalated into interlayers of slightly exfoliated graphite filled by carbon as anode with high volumetric capacity for lithium-ion battery. Electrochim Acta 184:364–370. https://doi.org/10.1016/j.electacta.2015.10.087

    Article  CAS  Google Scholar 

  28. Lv Y, Li H, Xie Y et al (2014) Facile synthesis and electrochemical properties of MnO2/carbon nanotubes. Particuology 15:34–38. https://doi.org/10.1016/j.partic.2012.12.006

    Article  CAS  Google Scholar 

  29. Alaf M, Tocoglu U, Kayis F, Akbulut H (2016) Sn/SnO2/Mwcnt composite anode and electrochemical impedance spectroscopy studies for Li-ion batteries. Fullerenes Nanotub Carbon Nanostructures 24:630–634. https://doi.org/10.1080/1536383X.2016.1221403

    Article  CAS  Google Scholar 

  30. Ju HS, Hong YJ, Cho JS, Kang YC (2016) Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries. Carbon N Y 100:137–144. https://doi.org/10.1016/j.carbon.2016.01.008

    Article  CAS  Google Scholar 

  31. Toçoğlu U, Alaf M, Akbulut H (2020) Towards high cycle stability yolk-shell structured silicon/rGO/MWCNT hybrid composites for Li-ion battery negative electrodes. Mater Chem Phys 240:122160. https://doi.org/10.1016/j.matchemphys.2019.122160

    Article  CAS  Google Scholar 

  32. Alaf M, Akbulut H (2014) Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries. J Power Sources 247:692–702

    Article  CAS  Google Scholar 

  33. Wei Q, Liu S, Song P et al (2019) Reduced graphene oxide-SnO2 nanosheets hybrid nanocomposite for improvement of formaldehyde sensing properties. J Mater Sci Mater Electron 30:12204–12214. https://doi.org/10.1007/s10854-019-01579-4

    Article  CAS  Google Scholar 

  34. Zhou FY, Xu JC, Hong B et al (2023) Porous SnO2 nanospheres coated with reduced graphene oxide for formaldehyde gas sensor: synthesis, performance and mechanism. J Mater Res. https://doi.org/10.1557/s43578-022-00883-w

    Article  Google Scholar 

  35. Cui J, Xu Z-L, Yao S et al (2016) Enhanced conversion reaction kinetics in low crystallinity SnO 2 /CNT anodes for Na-ion batteries. J Mater Chem A 4:10964–10973. https://doi.org/10.1039/C6TA03541H

    Article  CAS  Google Scholar 

  36. Versaci D, Costanzo A, Ronchetti SM et al (2021) Ultrasmall SnO2 directly grown on commercial C45 carbon as lithium-ion battery anodes for long cycling performance. Electrochim Acta 367:137489. https://doi.org/10.1016/j.electacta.2020.137489

    Article  CAS  Google Scholar 

  37. Guler A, Gungor H, Ozcan S et al (2018) A high-performance composite positive electrode based on graphene and Li (Ni1/3Co1/3Mn1/3)O2. Int J Energy Res 42:4499–4511. https://doi.org/10.1002/er.4198

    Article  CAS  Google Scholar 

  38. Jia R, Yue J, Xia Q et al (2018) Carbon shelled porous SnO2-δnanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater 13:303–311. https://doi.org/10.1016/j.ensm.2018.02.009

    Article  Google Scholar 

  39. Lan B, Wang Y, Zhang X, Wen G (2021) Interconnected SnO2/graphene+CNT network as high performance anode materials for lithium-ion batteries. Ceram Int 47:24476–24484. https://doi.org/10.1016/j.ceramint.2021.05.163

    Article  CAS  Google Scholar 

  40. Zhou D, Li X, Fan LZ, Deng Y (2017) Three-dimensional porous graphene-encapsulated CNT@SnO2composite for high-performance lithium and sodium storage. Electrochim Acta 230:212–221. https://doi.org/10.1016/j.electacta.2017.02.016

    Article  CAS  Google Scholar 

  41. Ling JK, Karuppiah C, Reddy MV et al (2021) Unraveling synergistic mixing of SnO2–TiO2 composite as anode for Li-ion battery and their electrochemical properties. J Mater Res 36:4120–4130. https://doi.org/10.1557/s43578-021-00313-3

    Article  CAS  Google Scholar 

  42. Jiang S, Huang R, Zhu W et al (2019) Free-standing SnO2@rGO anode via the anti-solvent-assisted precipitation for superior lithium storage performance. Front Chem 7:1–10. https://doi.org/10.3389/fchem.2019.00878

    Article  CAS  Google Scholar 

  43. Zhou D, Li X, Fan LZ, Deng Y (2017) Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage. Electrochim Acta 230:212–221. https://doi.org/10.1016/j.electacta.2017.02.016

    Article  CAS  Google Scholar 

  44. Zhou S, Zhou H, Zhang Y et al (2022) SnO2 anchored in S and N Co-doped carbon as the anode for long-life lithium-ion batteries. Nanomaterials 12:700. https://doi.org/10.3390/nano12040700

    Article  CAS  Google Scholar 

  45. Jiang Y, Yuan T, Sun W, Yan M (2012) Electrostatic spray deposition of porous SnO2/graphene anode films and their enhanced lithium-storage properties. ACS Appl Mater Interfaces 4:6216–6220. https://doi.org/10.1021/am301788m

    Article  CAS  Google Scholar 

  46. Wang R, Xu C, Sun J et al (2014) Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl Mater Interfaces 6:3427–3436. https://doi.org/10.1021/am405557c

    Article  CAS  Google Scholar 

  47. Jiang Y, Xu Y, Yuan T, Yan M (2013) Phase-tailored synthesis of tin oxide-graphene nanocomposites for anodes and their enhanced lithium-ion battery performance. Mater Lett 91:16–19. https://doi.org/10.1016/j.matlet.2012.09.067

    Article  CAS  Google Scholar 

  48. Lu X, Wang H, Wang Z et al (2016) Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J Alloys Compd 680:109–115. https://doi.org/10.1016/j.jallcom.2016.04.128

    Article  CAS  Google Scholar 

  49. Wang MS, Wang ZQ, Jia R et al (2018) Nano tin dioxide anchored onto carbon nanotube/graphene skeleton as anode material with superior lithium-ion storage capability. J Electroanal Chem 815:30–39. https://doi.org/10.1016/j.jelechem.2018.02.031

    Article  CAS  Google Scholar 

  50. Zhang H, Song H, Chen X et al (2012) Preparation and electrochemical performance of SnO2@carbon nanotube core-shell structure composites as anode material for lithium-ion batteries. Electrochim Acta 59:160–167. https://doi.org/10.1016/j.electacta.2011.10.055

    Article  CAS  Google Scholar 

  51. Zhang W, Du R, Zhou C et al (2019) Ultrafine SnO 2 aggregates in interior of porous carbon nanotubes as high-performance anode materials of lithium-ion batteries. Mater Today Energy 12:303–310. https://doi.org/10.1016/j.mtener.2019.02.003

    Article  Google Scholar 

  52. Cui X, Lv R, Sagar RUR et al (2015) Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim Acta 169:342–350. https://doi.org/10.1016/j.electacta.2015.04.074

    Article  CAS  Google Scholar 

  53. Tu J, Yuan Y, Zhan P et al (2014) Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance. J Phys Chem C 118:7357–7362. https://doi.org/10.1021/jp5011023

    Article  CAS  Google Scholar 

  54. Zhou X, Liu Y, Du C et al (2018) Free-standing sandwich-type graphene/nanocellulose/silicon laminar anode for flexible rechargeable lithium ion batteries. ACS Appl Mater Interfaces 10:29638–29646. https://doi.org/10.1021/acsami.8b10066

    Article  CAS  Google Scholar 

  55. Li X, Zhang K, Mitlin D et al (2018) Fundamental insight into zr modification of li- and mn-rich cathodes: combined transmission electron microscopy and electrochemical impedance spectroscopy study. Chem Mater 30:2566–2573. https://doi.org/10.1021/acs.chemmater.7b04861

    Article  CAS  Google Scholar 

  56. Lin J, He J, Chen Y et al (2016) Pomegranate-like silicon/nitrogen-doped graphene microspheres as superior-capacity anode for lithium-ion batteries. Electrochim Acta 215:667–673. https://doi.org/10.1016/j.electacta.2016.08.147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under contract number 116M997 and Bilecik Seyh Edebali University, Coordination of Scientific Research Project (BAP) under contract number 2017-01.BŞEÜ.03-01.

Author information

Authors and Affiliations

Authors

Contributions

MA contributed to Conceptualization, Visualization, Writing–Original Draft, Writing–Review & Editing, Project Administration. VÖ contributed to Data Curation, Investigation, Methodology, Visualization. UT contributed to Conceptualization, Investigation Data Curation, Validation, Visualization, Writing–Original Draft, Writing–Review & Editing. NÖ contributed to Validation, Visualization, Supervision. HA contributed to Supervision, Project Administration, Validation, Writing–Review & Editing.

Corresponding author

Correspondence to Mirac Alaf.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Jean-Francois Gohy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaf, M., Oncel, V., Tocoglu, U. et al. Synthesis and characterization of CNT@SnO2 decorated graphene anodes for Li-ion batteries as free-standing and flexible. J Mater Sci 58, 12298–12311 (2023). https://doi.org/10.1007/s10853-023-08800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08800-0

Navigation