Skip to main content
Log in

Prediction of a three-dimensional carbon allotrope moC12 with one-dimensional metallicity, superconductivity and mechanical anisotropy

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The search for carbon allotropes with exotic electrical and mechanical properties is one of frontier topics in materials science. In this work, we proposed a carbon allotrope, namely moC12, with unexpected one-dimensional metallicity, superconductivity and mechanical anisotropy via first-principles calculations. This novel carbon allotrope contains 12 atoms in its unit cell with interatomic connections via sp2sp3 hybridization, forming a three-dimensional spatial sandwich panel anisotropic structure. The dynamic and mechanical stability of the new structure in the ambient state is demonstrated. The one-dimensional conductivity originates from the one-dimensional conductive channel constituted between the sp2-hybridized atoms, while in other directions this conductive channel is interrupted by the residual sp3-hybridized carbon atoms. Moreover, moC12 is superconductive, with a superconducting critical temperature of 2.14 K. The unique three-dimensional spatial sandwich panel anisotropic structure endows moC12 with excellent toughness and also exhibits intense mechanical anisotropy including elasticity and tensile stress–strain. The distinctive conductive and mechanical natures make moC12 a potential material for probe in the direction measuring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. Kroto HW et al (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  3. Novoselov KS et al (2004) Science 306:666

    Article  CAS  Google Scholar 

  4. Bundy FP et al (1955) Nature 176:51

    Article  CAS  Google Scholar 

  5. Bernal JD, Bragg WL (1924) Proceedings of the royal society of london. Ser A Contain Papers Math Phys Char 106:749

    CAS  Google Scholar 

  6. Terrones H et al (2000) Phys Rev Lett 84:1716

    Article  CAS  Google Scholar 

  7. Liu Y et al (2018) Carbon 126:601

    Article  CAS  Google Scholar 

  8. Zhao C-X et al (2019) Comput Mater Sci 160:115

    Article  CAS  Google Scholar 

  9. Xia K et al (2022) Inorg Chem 61:18229

    Article  CAS  Google Scholar 

  10. Zhang W et al (2020) New J Chem 44:19789

    Article  CAS  Google Scholar 

  11. Zhang W et al (2020) Diam Relat Mater 109:108063

    Article  CAS  Google Scholar 

  12. Wu X et al (2017) Carbon 123:311

    Article  CAS  Google Scholar 

  13. Wang Y et al (2012) Comput Phys Commun 183:2063

    Article  CAS  Google Scholar 

  14. Chen M, Ying P, Liu C (2023) Int J Refract Metal Hard Mater 111:106086

    Article  CAS  Google Scholar 

  15. Liu C, Liu L, Ying P (2022) J Mater Sci 57:9231. https://doi.org/10.1007/s10853-022-07242-4

    Article  CAS  Google Scholar 

  16. Clark SJ et al (2005) Zeitschrift für Kristallographie - Crystalline Materials 220:567

    Article  CAS  Google Scholar 

  17. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  18. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566

    Article  CAS  Google Scholar 

  19. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  20. Pfrommer BG et al (1997) J Comput Phys 131:233

    Article  CAS  Google Scholar 

  21. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  22. Giannozzi P et al (2009) J Phys: Condens Matter 21:395502

    Google Scholar 

  23. Baroni S et al (2001) Rev Mod Phys 73:515

    Article  CAS  Google Scholar 

  24. Liao M et al (2020) Comput Mater Sci 172:109289

    Article  CAS  Google Scholar 

  25. Occelli F, Loubeyre P, LeToullec R (2003) Nat Mater 2:151

    Article  CAS  Google Scholar 

  26. Aasi A, Ebrahimi Bajgani S, Panchapakesan B (2023) AIP Adv 13:025157

    Article  CAS  Google Scholar 

  27. Aasi A, Aghaei SM, Panchapakesan B (2023) Int J Comput Mater Sci Eng 2350014

  28. Li Q et al (2009) Phys Rev Lett 102:175506

    Article  Google Scholar 

  29. Wang J-T et al (2014) Sci Rep 4:4339

    Article  Google Scholar 

  30. Zhang S et al (2013) Proc Natl Acad Sci 110:18809

    Article  CAS  Google Scholar 

  31. Sheng X-L et al (2011) Phys Rev Lett 106:155703

    Article  Google Scholar 

  32. Rignanese GM, Charlier JC (2008) Phys Rev B 78:125415

    Article  Google Scholar 

  33. Niu C-Y, Wang X-Q, Wang J-T (2014) J Chem Phys 140:054514

    Article  Google Scholar 

  34. Wang Z, Zhu X, Wang M (2020) Solid State Sci 105:106247

    Article  CAS  Google Scholar 

  35. Ying P et al (2023) Comput Mater Sci 219:111956

    Article  CAS  Google Scholar 

  36. Chen J et al (2021) J Mater Sci 56:17665. https://doi.org/10.1007/s10853-021-06455-3

    Article  CAS  Google Scholar 

  37. Wu Z-J et al (2007) Phys Rev B 76:054115

    Article  Google Scholar 

  38. Allen PB, Dynes RC (1975) Phys Rev B 12:905

    Article  CAS  Google Scholar 

  39. Chen X-Q et al (2011) Intermetallics 19:1275

    Article  CAS  Google Scholar 

  40. Pugh SF (1954) London Edinb Dublin Philos Mag J Sci 45:823

    Article  CAS  Google Scholar 

  41. Telling RH et al (2000) Phys Rev Lett 84:5160

    Article  CAS  Google Scholar 

  42. Li B, Sun H, Chen C (2014) Nat Commun 5:4965

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Postdoctoral Science Preferential Funding of Hebei Province (B2021005001), the National Natural Science Foundation of China (Grant Nos. 52202049, 52103322 and 12064013), the Ganzhou Science and Technology Project (Grant No. 202060) and the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

PY, YG and CL designed the research. PY, HL and SC performed the calculations. PY, HL, XG, SC, LL, YG and CL analyzed the results. PY wrote the manuscript. All authors contributed to the discussion. PY and HL contributed equally to this work.

Corresponding authors

Correspondence to Yufei Gao or Chao Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Ethical approval

Not applicable.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2070 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, P., Li, H., Guo, X. et al. Prediction of a three-dimensional carbon allotrope moC12 with one-dimensional metallicity, superconductivity and mechanical anisotropy. J Mater Sci 58, 12664–12672 (2023). https://doi.org/10.1007/s10853-023-08767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08767-y

Navigation